ترغب بنشر مسار تعليمي؟ اضغط هنا

A new tension in the cosmological model from primordial deuterium?

82   0   0.0 ( 0 )
 نشر من قبل Cyril Pitrou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent measurements of the D(p,$gamma)^3$He, nuclear reaction cross-section and of the neutron lifetime, along with the reevaluation of the cosmological baryon abundance from cosmic microwave background (CMB) analysis, call for an update of abundance predictions for light elements produced during the big-bang nucleosynthesis (BBN). While considered as a pillar of the hot big-bang model in its early days, BBN constraining power mostly rests on deuterium abundance. We point out a new $simeq1.8sigma$-tension on the baryonic density, or equivalently on the D/H abundance, between the value inferred on one hand from the analysis of the primordial abundances of light elements and, on the other hand, from the combination of CMB and baryonic oscillation data. This draws the attention on this sector of the theory and gives us the opportunity to reevaluate the status of BBN in the context of precision cosmology. Finally, this paper presents an upgrade of the BBN code PRIMAT.



قيم البحث

اقرأ أيضاً

The metal-poor damped Lyman alpha (DLA) system at z = 3.04984 in the QSO SDSSJ1419+0829 has near-ideal properties for an accurate determination of the primordial abundance of deuterium, (D/H)_p. We have analysed a high-quality spectrum of this object with software specifically designed to deduce the best fitting value of D/H and to assess comprehensively the random and systematic errors affecting this determination. We find (D/H)_DLA = (2.535 +/-0.05) x 10^(-5), which in turn implies Omega_b h^2 = 0.0223 +/- 0.0009, in very good agreement with Omega_b h^2 (CMB) = 0.0222 +/- 0.0004 deduced from the angular power spectrum of the cosmic microwave background. If the value in this DLA is indeed the true (D/H)_p produced by Big-Bang nucleosynthesis (BBN), there may be no need to invoke non-standard physics nor early astration of D to bring together Omega_b h^2 (BBN) and Omega_b h^2 (CMB). The scatter between most of the reported values of (D/H)_p in the literature may be due largely to unaccounted systematic errors and biases. Further progress in this area will require a homogeneous set of data comparable to those reported here and analysed in a self-consistent manner. Such an endeavour, while observationally demanding, has the potential of improving our understanding of BBN physics, including the relevant nuclear reactions, and the subsequent processing of 4He and 7Li through stars.
67 - A. Blanchard , Z. Sakr , S. IliC 2018
The abundance of clusters is a classical cosmological probe sensitive to both the geometrical aspects and the growth rate of structures. The abundance of clusters of galaxies measured by Planck has been found to be in tension with the prediction of t he LCDM models normalized to Planck CMB fluctuations power spectra. The same tension appears with X-ray cluster local abundance. Massive neutrinos and modified gravity are two possible solutions to fix this tension. Alternatively, others options include a bias in the selection procedure or in the mass calibration of clusters. We present a study, based on our recent work, updating the present situation on this topic and discuss the likelihood of the various options.
The current Hubble constant tension is usually presented by comparing constraints on $H_0$ only. However, the post-recombination background cosmic evolution is determined by two parameters in the standard $Lambda$CDM model, the Hubble constant ($H_0$ ) and todays matter energy fraction ($Omega_{rm{m}}$). If we therefore compare all constraints individually in the $H_0$-$Omega_{rm{m}}$ plane, (1) various constraints can be treated as independently as possible, (2) single-sided constraints are easier to consider, (3) compatibility among different constraints can be viewed in a more robust way, (4) the model dependence of each constraint is clear, and (5) whether or not a nonstandard model is able to reconcile all constraints in tension can be seen more effectively. We perform a systematic comparison of different constraints in the $H_0$-$Omega_{rm{m}}$ space based on a flat $Lambda$CDM model, treating them as separately as possible. Constraints along different degeneracy directions consistently overlap in one region of the space, with the local measurement from Cepheid variable-calibrated supernovae being the most outlying, followed by the time-delay strong-lensing result. Considering the possibility that some nonstandard physics may reconcile the constraints, we provide a general discussion on nonstandard models with modifications at high, mid, or low redshifts, and the effect of local environmental factors. Due to the different responses of individual constraints to a modified model, it is not easy for nonstandard models to reconcile all constraints if none of them have unaccounted-for systematic effects.
153 - J.J. He , S.Q. Hou , A. Parikh 2014
In the primordial Big Bang nucleosynthesis (BBN), only the lightest nuclides (D, $^3$He, $^4$He, and $^7$Li) were synthesized in appreciable quantities, and these relics provide us a unique window on the early universe. Currently, BBN simulations giv e acceptable agreement between theoretical and observed abundances of D and $^4$He, but it is still difficult to reconcile the predicted $^7$Li abundance with the observation for the Galactic halo stars. The BBN model overestimates the primordial $^7$Li abundance by about a factor of three, so called the cosmological lithium problem, a long-lasting pending issue in BBN. Great efforts have been paid in the past decades, however, the conventional nuclear physics seems unable to resolve such problem. It is well-known that the classical Maxwell-Boltzmann (MB) velocity distribution has been usually assumed for nuclei in the Big-Bang plasma. In this work, we have thoroughly investigated the impact of non-extensive Tsallis statistics (deviating from the MB) on thermonuclear reaction rates involved in standard models of BBN. It shows that the predicted primordial abundances of D, $^4$He, and $^7$Li agree very well with those observed ones by introducing a non-extensive parameter $q$. It is discovered that the velocities of nuclei in a hot Big-Bang plasma indeed violate the classical Maxwell-Boltzmann (MB) distribution in a very small deviation of about 6.3--8.2%. Thus, we have for the first time found a new solution to the cosmological lithium problem without introducing any mysterious theories. Furthermore, the implications of non-extensive statistics in other exotic high-temperature and density astrophysical environments should be explored, which might offer new insight into the nucleosynthesis of heavy elements.
We present an improved Minimal Variance (MV) method for using a radial peculiar velocity sample to estimate the average of the three-dimensional velocity field over a spherical volume, which leads to an easily interpretable bulk flow measurement. The only assumption required is that the velocity field is irrotational. The resulting bulk flow estimate is particularly insensitive to smaller scale flows. We also introduce a new constraint into the MV method that ensures that bulk flow estimates are independent of the value of the Hubble constant $H_o$; this is important given the tension between the locally measured $H_o$ and that obtained from the cosmic background radiation observations. We apply our method to the textit{CosmicFlows-3} catalogue and find that, while the bulk flows for shallower spheres are consistent with the standard cosmological model, there is some tension between the bulk flow in a spherical volume with radius $150$hmpc and its expectations; we find only a $sim 2%$ chance of obtaining a bulk flow as large or larger in the standard cosmological model with textit{Planck} parameters
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا