ﻻ يوجد ملخص باللغة العربية
Using angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED), together with density-functional theory (DFT) calculation, we report the formation of charge density wave (CDW) and its interplay with the Kondo effect and topological states in CeSbTe. The observed Fermi surface (FS) exhibits parallel segments that can be well connected by the observed CDW ordering vector, indicating that the CDW order is driven by the electron-phonon coupling (EPC) as a result of the nested FS. The CDW gap is large (~0.3 eV) and momentum-dependent, which naturally explains the robust CDW order up to high temperatures. The gap opening leads to a reduced density of states (DOS) near the Fermi level (EF), which correspondingly suppresses the many-body Kondo effect, leading to very localized 4f electrons at 20 K and above. The topological Dirac cone at the X point is found to remain gapless inside the CDW phase. Our results provide evidence for the competition between CDW and the Kondo effect in a Kondo lattice system. The robust CDW order in CeSbTe and related compounds provide an opportunity to search for the long-sought-after axionic insulator.
We report the existence of the charge density wave (CDW) in the ground state of 1D Kondo lattice model at the filling of n=0.75 in the weak coupling region. The CDW is driven by the effective Coulomb repulsion mediated by the localized spins. Based o
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C
Charge density waves (CDW) are modulations of the electron density and the atomic lattice that develop in some crystalline materials at low temperature. We report an unusual example of a CDW in BaFe$_2$Al$_9$ below 100 K. In contrast to the canonical
(TaSe4)2I, a quasi-one-dimensional (1D) crystal, shows a characteristic temperature-driven metal-insulator phase transition. Above the charge density wave (CDW) temperature Tc, (TaSe4)2I has been predicted to harbor a Weyl semimetal phase. Below Tc,
Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as p