ترغب بنشر مسار تعليمي؟ اضغط هنا

Primordial black holes and secondary gravitational waves from inflationary model with a non-canonical kinetic term

417   0   0.0 ( 0 )
 نشر من قبل Zhu Yi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the enhancement mechanism provided by a noncanonical kinetic term with a peak, the amplitude of primordial curvature perturbations can be enhanced by seven orders of magnitude at small scales while keeping to be consistent with observations at large scales. The peak function and inflationary potential are not restricted in this mechanism. We use the Higgs model and T-model as examples to show how abundant primordial black hole dark matter with different mass and scalar induced secondary gravitational waves with different peak frequency are generated. We also show that the enhanced power spectrum for the primordial curvature perturbations and the energy density of the scalar induced secondary gravitational waves can have either a sharp peak or a broad peak. The primordial black holes with the mass around $10^{-14}-10^{-12} M_{odot}$ produced with the enhancement mechanism can make up almost all dark matter, and the scalar induced secondary gravitational waves accompanied with the production of primordial black holes can be tested by the pulsar timing arrays and spaced based gravitational wave observatory. Therefore, the mechanism can be tested by primordial black hole dark matter and gravitational wave observations.



قيم البحث

اقرأ أيضاً

Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $lesssim 10^9$ g PBHs can be used to explore and discriminate different formation scenarios of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
121 - Zihan Zhou , Jie Jiang , Yi-Fu Cai 2020
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that gov erns the first stage and another field chi with a hilltop-like potential that dominates the second stage. The parametric resonance seeded by the periodic structure at the first stage amplifies the perturbations of both fields inside the Hubble radius. While the evolution of the background trajectory experiences a turn as the oscillatory barrier height increases, the amplified perturbations of chi remain as they are and contribute to the final curvature perturbation. It turns out that the primordial power spectrum displays a significant resonant peak on small scales, which can lead to an abundant production of primordial black holes. Furthermore, gravitational waves are also generated from the resonantly enhanced field perturbations during inflation, the amplitude of which may be constrained by future gravitational wave interferometers.
Primordial black holes (PBHs) cannot be produced abundantly enough to be the dark matter in canonical single-field inflation under slow roll. This conclusion is robust to local non-Gaussian correlations between long- and short-wavelength curvature mo des, which we show have no effect in slow roll on local primordial black hole abundances. For the prototypical model which evades this no go, ultra-slow roll (USR), these squeezed non-Gaussian correlations have at most an order unity effect on the variance of PBH-producing curvature fluctuations for models that would otherwise fail to form sufficient PBHs. Moreover, the transition out of USR, which is necessary for a successful model, suppresses even this small enhancement unless it causes a large increase in the inflaton kinetic energy in a fraction of an e-fold, which we call a large and fast transition. Along the way we apply the in-in formalism, the delta N formalism, and gauge transformations to compute non-Gaussianities and illuminate different aspects of the physical origin of these results. Local non-Gaussianity in the squeezed limit does not weaken the Gaussian conclusion that PBHs as dark matter in canonical single-field inflation require a complicated and fine-tuned potential shape with an epoch where slow roll is transiently violated.
Recent observational constraints indicate that primordial black holes (PBHs) with the mass scale $sim 10^{-12}M_{odot}$ can explain most of dark matter in the Universe. To produce this kind of PBHs, we need an enhance in the primordial scalar curvatu re perturbations to the order of ${mathcal{O}(10^{-2})}$ at the scale $ k sim 10^{12}~rm Mpc^{-1}$. Here, we investigate the production of PBHs and induced gravitational waves (GWs) in the framework of textbf{$k$-inflation}. We solve numerically the Mukhanov-Sasaki equation to obtain the primordial scalar power spectrum. In addition, we estimate the PBHs abundance $f_{text{PBH}}^{text{peak}}$ as well as the energy density parameter $Omega_{rm GW,0}$ of induced GWs. Interestingly enough is that for a special set of model parameters, we estimate the mass scale and the abundance of PBHs as $sim{cal O}(10^{-13})M_{odot}$ and $f_{text{PBH}}^{text{peak}}=0.96$, respectively. This confirms that the mechanism of PBHs production in our inflationary model can justify most of dark matter. Furthermore, we evaluate the GWs energy density parameter and conclude that it behaves like a power-law function $Omega_{rm GW}sim (f/f_c)^n$ where in the infrared limit $fll f_{c}$, the power index reads $n=3-2/ln(f_c/f)$.
Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peak s of primordial fluctuations on small scales, as long as the amplitude of primordial perturbations on small scales is enhanced significantly relative to the amplitude of perturbations observed on large scales. One consequence of these small-scale perturbations is generation of stochastic gravitational waves that arise at second order in scalar perturbations, mostly before the formation of the PBHs. These induced gravitational waves have been shown, assuming gaussian initial conditions, to be comparable to the current limits from the European Pulsar Timing Array, severely restricting this scenario. We show, however, that models with enhanced fluctuation amplitudes typically involve non-gaussian initial conditions. With such initial conditions, the current limits from pulsar timing can be evaded. The amplitude of the induced gravitational-wave background can be larger or smaller than the stochastic gravitational-wave background from supermassive black hole binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا