ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of the gas fraction of quiescent galaxies modeled as a consequence of their creation rate

140   0   0.0 ( 0 )
 نشر من قبل Raphael Gobat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the evolution of the interstellar medium of quiescent galaxies, currently emerging from recent analyses, with the help of a simple model based on well-established empirical relations such as the stellar mass functions and the main sequence of star formation. This model is meant to describe observed quantities without making specific assumptions on the nature of quenching processes, but relying on their observable consequences. We find that the high gas fractions seen or suggested at high redshift in quiescent galaxies, and their apparent mild evolution at early times, can be mostly attributed to a progenitor effect where recently quenched galaxies with ~10% gas fractions dominate the quiescent galaxy population until z~1. In the same context, the much lower gas and dust fractions measured in local early-type galaxies are interpreted as the product of the steady depletion of their interstellar medium on a ~2 Gyr timescale, coupled with a higher fraction of more gas-exhaustive events.



قيم البحث

اقرأ أيضاً

144 - Lisa M. Young 2014
I present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the bro ader context of early-type galaxy assembly and star formation history. The cold gas data also provide valuable constraints for numerical simulations of early-type galaxies.
We investigate the origin of the evolution of the population-averaged central stellar mass density ($Sigma_1$) of quiescent galaxies (QGs) by probing the relation between stellar age and $Sigma_1$ at $zsim0$. We use the Zurich ENvironmental Study (ZE NS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the $Sigma_1-M_{star}$ plane, which we refer to as $Sigma_1$ ridgeline. Colors of ($B-I$) and ($I-J$) are used to divide QGs into three age categories: young ($<2~mathrm{Gyr}$), intermediate ($2-4~mathrm{Gyr}$), and old ($>4~mathrm{Gyr}$). At fixed stellar mass, old QGs on the $Sigma_1$ ridgeline have higher $Sigma_1$ than young QGs. This shows that galaxies landing on the $Sigma_1$ ridgeline at later epochs arrive with lower $Sigma_1$, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at $z=0$ with the zeropoint of the quiescent population 4 Gyr back in time, at $z=0.37$. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the $Sigma_1$ ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower $Sigma_1$ at later times (progenitor bias). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age-$Sigma_1$ trend for central galaxies.
232 - C. Alard 2010
This paper presents a principal components analysis of rotation curves from a sample of low surface brightness galaxies. The physical meaning of the principal components is investigated, and related to the intrinsic properties of the galaxies. The ro tation curves are re-scaled using the optical disk scale, the resulting principal component decomposition demonstrates that the whole sample is properly approximated using two components. The ratio of the second to the first component is related to the halo steepness in the central region, is correlated to the gas fraction in the galaxy, and is un-correlated to other parameters. As a consequence the gas fraction appear as a fundamental variable with respect to the galaxies rotation curves, and its correlation with the halo steepness is especially important. Since the gas fraction is related to the degree of galaxy evolution, it is very likely that the steepness of the halo at the center is a consequence of galaxy evolution. More evolved galaxies have shallower central profile and statistically less gas, most likely as a consequence of more star formation and supernovae. The differences in evolution, gas fractions and halo central steepness of the galaxies could be due to the influence of different environments.
We measure stellar masses and structural parameters for 5,500 quiescent and 20,000 star-forming galaxies at 0.3<zleq1.5 in the Newfirm Medium Band Survey COSMOS and UKIDSS UDS fields. We combine these measurements to infer velocity dispersions and de termine how the number density of galaxies at fixed inferred dispersion, or the Velocity Dispersion Function (VDF), evolves with time for each population. We show that the number of galaxies with high velocity dispersions appears to be surprisingly stable with time, regardless of their star formation history. Furthermore, the overall VDF for star-forming galaxies is constant with redshift, extending down to the lowest velocity dispersions probed by this study. The only galaxy population showing strong evolution are quiescent galaxies with low inferred dispersions, whose number density increases by a factor of ~4 since z=1.5. This build-up leads to an evolution in the quiescent fraction of galaxies such that the threshold dispersion above which quiescent galaxies dominate the counts moves to lower velocity dispersion with time. We show that our results are qualitatively consistent with a simple model in which star-forming galaxies quench and are added to the quiescent population. In order to compensate for the migration into the quiescent population, the velocity dispersions of star-forming galaxies must increase, with a rate that increases with dispersion.
155 - ChangHoon Hahn 2014
We investigate the effects of galaxy environment on the evolution of the quiescent fraction ($f_mathrm{Q}$) from z =0.8 to 0.0 using spectroscopic redshifts and multi-wavelength imaging data from the PRIsm MUlti-object Survey (PRIMUS) and the Sloan D igitial Sky Survey (SDSS). Our stellar mass limited galaxy sample consists of ~14,000 PRIMUS galaxies within z = 0.2-0.8 and ~64,000 SDSS galaxies within z = 0.05-0.12. We classify the galaxies as quiescent or star-forming based on an evolving specific star formation cut, and as low or high density environments based on fixed cylindrical aperture environment measurements on a volume-limited environment defining population. For quiescent and star-forming galaxies in low or high density environments, we examine the evolution of their stellar mass function (SMF). Then using the SMFs we compute $f_mathrm{Q}(M_{*})$ and quantify its evolution within our redshift range. We find that the quiescent fraction is higher at higher masses and in denser environments. The quiescent fraction rises with cosmic time for all masses and environments. At a fiducial mass of $10^{10.5}M_odot$, from z~0.7 to 0.1, the quiescent fraction rises by 15% at the lowest environments and by 25% at the highest environments we measure. These results suggest that for a minority of galaxies their cessation of star formation is due to external influences on them. However, in the recent Universe a substantial fraction of the galaxies that cease forming stars do so due to internal processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا