ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving nonlinear differential equations with differentiable quantum circuits

67   0   0.0 ( 0 )
 نشر من قبل Oleksandr Kyriienko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a quantum algorithm to solve systems of nonlinear differential equations. Using a quantum feature map encoding, we define functions as expectation values of parametrized quantum circuits. We use automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits (DQCs), thus avoiding inaccurate finite difference procedures for calculating gradients. We describe a hybrid quantum-classical workflow where DQCs are trained to satisfy differential equations and specified boundary conditions. As a particular example setting, we show how this approach can implement a spectral method for solving differential equations in a high-dimensional feature space. From a technical perspective, we design a Chebyshev quantum feature map that offers a powerful basis set of fitting polynomials and possesses rich expressivity. We simulate the algorithm to solve an instance of Navier-Stokes equations, and compute density, temperature and velocity profiles for the fluid flow in a convergent-divergent nozzle.

قيم البحث

اقرأ أيضاً

Deep quantum neural networks may provide a promising way to achieve quantum learning advantage with noisy intermediate scale quantum devices. Here, we use deep quantum feedforward neural networks capable of universal quantum computation to represent the mixed states for open quantum many-body systems and introduce a variational method with quantum derivatives to solve the master equation for dynamics and stationary states. Owning to the special structure of the quantum networks, this approach enjoys a number of notable features, including the absence of barren plateaus, efficient quantum analogue of the backpropagation algorithm, resource-saving reuse of hidden qubits, general applicability independent of dimensionality and entanglement properties, as well as the convenient implementation of symmetries. As proof-of-principle demonstrations, we apply this approach to both one-dimensional transverse field Ising and two-dimensional $J_1-J_2$ models with dissipation, and show that it can efficiently capture their dynamics and stationary states with a desired accuracy.
90 - K.Nakao , A.Matsuyama 2009
We construct quantum circuits for solving one-dimensional Schrodinger equations. Simulations of three typical examples, i.e., harmonic oscillator, square-well and Coulomb potential, show that reasonable results can be obtained with eight qubits. Our simulations show that simple quantum circuits can solve the standard quantum mechanical problems.
Quantum computers are known to provide an exponential advantage over classical computers for the solution of linear differential equations in high-dimensional spaces. Here, we present a quantum algorithm for the solution of nonlinear differential equ ations. The quantum algorithm provides an exponential advantage over classical algorithms for solving nonlinear differential equations. Potential applications include the Navier-Stokes equation, plasma hydrodynamics, epidemiology, and more.
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in $Dge 1 $ spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth $O(log N)$ random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any $D$. Previous results on random circuits have only shown that $O(N^{1/D})$ depth suffices or that $O(log^3 N)$ depth suffices for all-to-all connectivity ($D to infty$). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with $N$. We find that the requisite depth scales like $O(log N)$ only for dimensions $D ge 2$, and that random circuits require $O(sqrt{N})$ depth for $D=1$. Finally, we introduce an expurgation algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into additional stabilizers or gauge operators. With such targeted measurements, we can achieve sub-logarithmic depth in $Dge 2$ below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4-8 expurgated random circuits in $D=2$ dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
While there has been extensive previous work on efficient quantum algorithms for linear differential equations, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. Despite this obstacle, we develop a quantum algorithm for initial value problems described by dissipative quadratic $n$-dimensional ordinary differential equations. Assuming $R < 1$, where $R$ is a parameter characterizing the ratio of the nonlinearity to the linear dissipation, this algorithm has complexity $T^2mathrm{poly}(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time and $epsilon$ is the allowed error in the output quantum state. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in $T$. We achieve this improvement using the method of Carleman linearization, for which we give a novel convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for $R ge sqrt{2}$. Finally, we discuss potential applications of this approach to problems arising in biology as well as in fluid and plasma dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا