ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient frequency conversion in a degenerate $chi^{(2)}$ microresonator

311   0   0.0 ( 0 )
 نشر من قبل Changling Zou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microresonators on a photonic chip could enhance nonlinear optics effects, thus are promising for realizing scalable high-efficiency frequency conversion devices. However, fulfilling phase matching conditions among multiple wavelengths remains a significant challenge. Here, we present a feasible scheme for degenerate sum-frequency conversion that only requires the two-mode phase matching condition. When the drive and the signal are both near resonance to the same telecom mode, an efficient on-chip photon-number conversion efficiency upto 42% was achieved, showing a broad tuning bandwidth over 250GHz. Furthermore, cascaded Pockels and Kerr nonlinear optical effects are observed, enabling the parametric amplification of the optical signal to a distinct wavelength in a single device. The scheme demonstrated in this work provides an alternative approach to realizing high-efficiency frequency conversion and is promising for future studies on communications, atom clocks, sensing, and imaging.

قيم البحث

اقرأ أيضاً

Microresonator-based platforms with $chi^{(2)}$ nonlinearities have the potential to perform frequency conversion at high efficiencies and ultralow powers with small footprints. The standard doctrine for achieving high conversion efficiency in cavity -based devices requires perfect matching, that is, zero phase mismatch while all relevant frequencies are precisely at a cavity resonance, which is difficult to achieve in integrated platforms due to fabrication errors and limited tunabilities. In this Letter, we show that the violation of perfect matching does not necessitate a reduction in conversion efficiency. On the contrary, in many cases, mismatches should be intentionally introduced to improve the efficiency or tunability of conversion. We identify the universal conditions for maximizing the efficiency of cavity-based frequency conversion and show a straightforward approach to fully compensate for parasitic processes such as thermorefractive and photorefractive effects that, typically, can limit the conversion efficiency. We also show rigorously that these high-efficiency states are stable.
Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve ~30% conversion efficiency (~200 mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.
111 - Xiaoxiao Xue , Xiaoping Zheng , 2017
A shaped doublet pump pulse is proposed for simultaneous octave-spanning soliton Kerr frequency comb generation and second-harmonic conversion in a single microresonator. The temporal soliton in the cavity is trapped atop a doublet pulse pedestal, re sulting in a greatly expanded soliton region compared to that with a general Gaussian pulse pump. The possibility of single-microresonator comb self-referencing in a single silicon nitride microring, which can facilitate compact on-chip optical clocks, is demonstrated via simulation.
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.
Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generatio n has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا