ترغب بنشر مسار تعليمي؟ اضغط هنا

Flight Sensor Data and Beamforming based Integrated UAV Tracking with Channel Estimation using Gaussian Process Regression

76   0   0.0 ( 0 )
 نشر من قبل Ha-Lim Song
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

With explosively increasing demands for unmanned aerial vehicle (UAV) applications, reliable link acquisition for serving UAVs is required. Considering the dynamic characteristics of UAV, it is hugely challenging to persist a reliable link without beam misalignment. In this paper, we propose a flight sensor data and beamforming signal based integrated UAV tracking scheme to deal with this problem. The proposed scheme provides a compatible integrated system considering the practical specification of the flight sensor data and the beamforming pilot signal. The UAV position tracking is comprised of two steps: 1) UAV position prediction by the flight sensor data and 2) position update with the beamforming signal using Gaussian process regression (GPR) method, which is a nonparametric machine learning. The flight sensor data can assist ground station (GS) or UAV nodes in designing the precoding and the receive beamforming matrix with drastically reduced overheads. The beamforming signal can accomplish high beamforming gain to be maintained even when the flight sensor data is absent. Therefore, the proposed scheme can support the moving target continuously by utilizing these two signals. The simulation results are provided to confirm that the proposed scheme outperforms other conventional beam tracking schemes. We also derive 3-dimensional (3D) beamforming gain and spectral efficiency (SE) from the mean absolute error (MAE) of the angular value estimation, which can be used as beamforming performance metrics of the data transmission link in advance.



قيم البحث

اقرأ أيضاً

Infrastructure recovery time estimation is critical to disaster management and planning. Inspired by recent resilience planning initiatives, we consider a situation where experts are asked to estimate the time for different infrastructure systems to recover to certain functionality levels after a scenario hazard event. We propose a methodological framework to use expert-elicited data to estimate the expected recovery time curve of a particular infrastructure system. This framework uses the Gaussian process regression (GPR) to capture the experts estimation-uncertainty and satisfy known physical constraints of recovery processes. The framework is designed to find a balance between the data collection cost of expert elicitation and the prediction accuracy of GPR. We evaluate the framework on realistically simulated expert-elicited data concerning the two case study events, the 1995 Great Hanshin-Awaji Earthquake and the 2011 Great East Japan Earthquake.
Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty using a prior distribution constructed using Gaussian process regression (GPR). As an example, we apply this technique to the measurement of chirp mass using (simulated) gravitational-wave signals from binary black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in studies of these systems. We explain our approach in detail and provide proofs of various features of the method, including the limiting behavior for high signal-to-noise, where systematic model uncertainties dominate over noise errors. We find that the marginalized likelihood constructed via GPR offers a significant improvement in parameter estimation over the standard, uncorrected likelihood both in our simple one-dimensional study, and theoretically in general. We also examine the dependence of the method on the size of training set used in the GPR; on the form of covariance function adopted for the GPR, and on changes to the detector noise power spectral density.
275 - Yue Xiao , Yu Ye , Shaocheng Huang 2020
To handle the data explosion in the era of internet of things (IoT), it is of interest to investigate the decentralized network, with the aim at relaxing the burden to central server along with keeping data privacy. In this work, we develop a fully d ecentralized federated learning (FL) framework with an inexact stochastic parallel random walk alternating direction method of multipliers (ISPW-ADMM). Performing more communication efficient and enhanced privacy preservation compared with the current state-of-the-art, the proposed ISPW-ADMM can be partially immune to the impacts from time-varying dynamic network and stochastic data collection, while still in fast convergence. Benefits from the stochastic gradients and biased first-order moment estimation, the proposed framework can be applied to any decentralized FL tasks over time-varying graphs. Thus to further demonstrate the practicability of such framework in providing fast convergence, high communication efficiency, and system robustness, we study the extreme learning machine(ELM)-based FL model for robust beamforming (BF) design in UAV communications, as verified by the numerical simulations.
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. However, these two modules have been treated as two stand-alone components, which makes it difficult t o achieve a global system optimality. In this paper, we propose a deep learning-based approach that directly optimizes the beamformers at the base station according to the received uplink pilots, thereby, bypassing the explicit channel estimation. Different from the existing fully data-driven approach where all the modules are replaced by deep neural networks (DNNs), a neural calibration method is proposed to improve the scalability of the end-to-end design. In particular, the backbone of conventional time-efficient algorithms, i.e., the least-squares (LS) channel estimator and the zero-forcing (ZF) beamformer, is preserved and DNNs are leveraged to calibrate their inputs for better performance. The permutation equivariance property of the formulated resource allocation problem is then identified to design a low-complexity neural network architecture. Simulation results will show the superiority of the proposed neural calibration method over benchmark schemes in terms of both the spectral efficiency and scalability in large-scale wireless networks.
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar ded as the `inputs and the event times are the `outputs. This allows for highly flexible inference of non-linear relationships between covariates and event times. Many existing methods, such as the ubiquitous Cox proportional hazards model, focus primarily on the hazard rate which is typically assumed to take some parametric or semi-parametric form. Our proposed model belongs to the class of accelerated failure time models where we focus on directly characterising the relationship between covariates and event times without any explicit assumptions on what form the hazard rates take. It is straightforward to include various types and combinations of censored and truncated observations. We apply our approach to both simulated and experimental data. We then apply multiple output GP regression, which can handle multiple potentially correlated outputs for each input, to competing risks survival data where multiple event types can occur. By tuning one of the model parameters we can control the extent to which the multiple outputs (the time-to-event for each risk) are dependent thus allowing the specification of correlated risks. Simulation studies suggest that in some cases assuming dependence can lead to more accurate predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا