ﻻ يوجد ملخص باللغة العربية
We study theoretically a gas consisting of charged bosons (ions) over the flat dielectric surface at low temperatures and its tendency to form a state with a Bose-Einstein condensate. For the stability of a system, an additional external electric field, which keeps charges at the dielectric surface, is introduced. The formalism is developed in the framework of a self-consistent-field approach, which combines the quasiclassical description in terms of the Wigner distribution functions and the quantum-mechanical approach by employing the Gross-Pitaevskii equation. We predict a formation of the state with a Bose-Einstein condensate and determine the near-critical physical characteristics of the system. It is shown that the thermal and condensate components become spatially separated under these conditions.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitio
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable stat
We report on the attainment of Bose-Einstein condensation of 86Sr. This isotope has a scattering length of about +800 a0 and thus suffers from fast three-body losses. To avoid detrimental atom loss, evaporative cooling is performed at low densities a
We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic field. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of $^{168}
We observe multi-step condensation of sodium atoms with spin $F=1$, where the different Zeeman components $m_F=0,pm 1$ condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization $m_z$ a