ترغب بنشر مسار تعليمي؟ اضغط هنا

Aspects of Bose-Einstein condensation in a charged boson system over the dielectric surface

47   0   0.0 ( 0 )
 نشر من قبل Illia Lukin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically a gas consisting of charged bosons (ions) over the flat dielectric surface at low temperatures and its tendency to form a state with a Bose-Einstein condensate. For the stability of a system, an additional external electric field, which keeps charges at the dielectric surface, is introduced. The formalism is developed in the framework of a self-consistent-field approach, which combines the quasiclassical description in terms of the Wigner distribution functions and the quantum-mechanical approach by employing the Gross-Pitaevskii equation. We predict a formation of the state with a Bose-Einstein condensate and determine the near-critical physical characteristics of the system. It is shown that the thermal and condensate components become spatially separated under these conditions.



قيم البحث

اقرأ أيضاً

Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitio us tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable stat e using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10^5 atoms. This puts 84Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.
We report on the attainment of Bose-Einstein condensation of 86Sr. This isotope has a scattering length of about +800 a0 and thus suffers from fast three-body losses. To avoid detrimental atom loss, evaporative cooling is performed at low densities a round 3x10^12 cm^-3 in a large volume optical dipole trap. We obtain almost pure condensates of 5x10^3 atoms.
414 - K. Aikawa , A. Frisch , M. Mark 2012
We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic field. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of $^{168} $Er, containing up to $7 times 10^{4}$ atoms. Feshbach spectroscopy reveals an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to 3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar Bose-Einstein condensate and we observe its characteristic d-wave collapse.
We observe multi-step condensation of sodium atoms with spin $F=1$, where the different Zeeman components $m_F=0,pm 1$ condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization $m_z$ a nd on the quadratic Zeeman energy $q$ (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin 1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading for instance to condensation in $m_F=pm 1$, a phenomenon that cannot occur for an ideal gas with $q>0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا