ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Channel Automatic Speech Recognition Using Deep Complex Unet

90   0   0.0 ( 0 )
 نشر من قبل Yuxiang Kong Kyx
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has shown promising improvement over the conventional signal processing methods. In this paper, we propose to adopt the architecture of deep complex Unet (DCUnet) - a powerful complex-valued Unet-structured speech enhancement model - as the front-end of the multi-channel acoustic model, and integrate them in a multi-task learning (MTL) framework along with cascaded framework for comparison. Meanwhile, we investigate the proposed methods with several training strategies to improve the recognition accuracy on the 1000-hours real-world XiaoMi smart speaker data with echos. Experiments show that our proposed DCUnet-MTL method brings about 12.2% relative character error rate (CER) reduction compared with the traditional approach with array processing plus single-channel acoustic model. It also achieves superior performance than the recently proposed neural beamforming method.



قيم البحث

اقرأ أيضاً

To date, mainstream target speech separation (TSS) approaches are formulated to estimate the complex ratio mask (cRM) of the target speech in time-frequency domain under supervised deep learning framework. However, the existing deep models for estima ting cRM are designed in the way that the real and imaginary parts of the cRM are separately modeled using real-valued training data pairs. The research motivation of this study is to design a deep model that fully exploits the temporal-spectral-spatial information of multi-channel signals for estimating cRM directly and efficiently in complex domain. As a result, a novel TSS network is designed consisting of two modules, a complex neural spatial filter (cNSF) and an MVDR. Essentially, cNSF is a cRM estimation model and an MVDR module is cascaded to the cNSF module to reduce the nonlinear speech distortions introduced by neural network. Specifically, to fit the cRM target, all input features of cNSF are reformulated into complex-valued representations following the supervised learning paradigm. Then, to achieve good hierarchical feature abstraction, a complex deep neural network (cDNN) is delicately designed with U-Net structure. Experiments conducted on simulated multi-channel speech data demonstrate the proposed cNSF outperforms the baseline NSF by 12.1% scale-invariant signal-to-distortion ratio and 33.1% word error rate.
Multi-channel speech enhancement aims to extract clean speech from a noisy mixture using signals captured from multiple microphones. Recently proposed methods tackle this problem by incorporating deep neural network models with spatial filtering tech niques such as the minimum variance distortionless response (MVDR) beamformer. In this paper, we introduce a different research direction by viewing each audio channel as a node lying in a non-Euclidean space and, specifically, a graph. This formulation allows us to apply graph neural networks (GNN) to find spatial correlations among the different channels (nodes). We utilize graph convolution networks (GCN) by incorporating them in the embedding space of a U-Net architecture. We use LibriSpeech dataset and simulate room acoustics data to extensively experiment with our approach using different array types, and number of microphones. Results indicate the superiority of our approach when compared to prior state-of-the-art method.
107 - Hang Lv , Zhehuai Chen , Hainan Xu 2021
We introduce asynchronous dynamic decoder, which adopts an efficient A* algorithm to incorporate big language models in the one-pass decoding for large vocabulary continuous speech recognition. Unlike standard one-pass decoding with on-the-fly compos ition decoder which might induce a significant computation overhead, the asynchronous dynamic decoder has a novel design where it has two fronts, with one performing exploration and the other backfill. The computation of the two fronts alternates in the decoding process, resulting in more effective pruning than the standard one-pass decoding with an on-the-fly composition decoder. Experiments show that the proposed decoder works notably faster than the standard one-pass decoding with on-the-fly composition decoder, while the acceleration will be more obvious with the increment of data complexity.
Conventional speech enhancement technique such as beamforming has known benefits for far-field speech recognition. Our own work in frequency-domain multi-channel acoustic modeling has shown additional improvements by training a spatial filtering laye r jointly within an acoustic model. In this paper, we further develop this idea and use frequency aligned network for robust multi-channel automatic speech recognition (ASR). Unlike an affine layer in the frequency domain, the proposed frequency aligned component prevents one frequency bin influencing other frequency bins. We show that this modification not only reduces the number of parameters in the model but also significantly and improves the ASR performance. We investigate effects of frequency aligned network through ASR experiments on the real-world far-field data where users are interacting with an ASR system in uncontrolled acoustic environments. We show that our multi-channel acoustic model with a frequency aligned network shows up to 18% relative reduction in word error rate.
Speech emotion recognition is a crucial problem manifesting in a multitude of applications such as human computer interaction and education. Although several advancements have been made in the recent years, especially with the advent of Deep Neural N etworks (DNN), most of the studies in the literature fail to consider the semantic information in the speech signal. In this paper, we propose a novel framework that can capture both the semantic and the paralinguistic information in the signal. In particular, our framework is comprised of a semantic feature extractor, that captures the semantic information, and a paralinguistic feature extractor, that captures the paralinguistic information. Both semantic and paraliguistic features are then combined to a unified representation using a novel attention mechanism. The unified feature vector is passed through a LSTM to capture the temporal dynamics in the signal, before the final prediction. To validate the effectiveness of our framework, we use the popular SEWA dataset of the AVEC challenge series and compare with the three winning papers. Our model provides state-of-the-art results in the valence and liking dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا