We classify the subvarieties of infinite dimensional affine space that are stable under the infinite symmetric group. We determine the defining equations and point sets of these varieties as well as the containments between them.
In this note we look at the freeness for complex affine hypersurfaces. If $X subset mathbb{C}^n$ is such a hypersurface, and $D$ denotes the associated projective hypersurface, obtained by taking the closure of $X$ in $mathbb{P}^n$, then we relate fi
rst the Jacobian syzygies of $D$ and those of $X$. Then we introduce two types of freeness for an affine hypersurface $X$, and prove various relations between them and the freeness of the projective hypersurface $D$. We write down a proof of the folklore result saying that an affine hypersurface is free if and only if all of its singularities are free, in the sense of K. Saitos definition in the local setting. In particular, smooth affine hypersurfaces and affine plane curves are always free. Some other results, involving global Tjurina numbers and minimal degrees of non trivial syzygies are also explored.
In this paper we study tensor products of affine abelian group schemes over a perfect field $k.$ We first prove that the tensor product $G_1 otimes G_2$ of two affine abelian group schemes $G_1,G_2$ over a perfect field $k$ exists. We then describe t
he multiplicative and unipotent part of the group scheme $G_1 otimes G_2$. The multiplicative part is described in terms of Galois modules over the absolute Galois group of $k.$ We describe the unipotent part of $G_1 otimes G_2$ explicitly, using Dieudonne theory in positive characteristic. We relate these constructions to previously studied tensor products of formal group schemes.
A symmetric tensor may be regarded as a partially symmetric tensor in several different ways. These produce different notions of rank for the symmetric tensor which are related by chains of inequalities. By exploiting algebraic tools such as apolarit
y theory, we show how the study of the simultaneous symmetric rank of partial derivatives of the homogeneous polynomial associated to the symmetric tensor can be used to prove equalities among different partially symmetric ranks. This approach aims to understand to what extent the symmetries of a tensor affect its rank. We apply this to the special cases of binary forms, ternary and quaternary cubics, monomials, and elementary symmetric polynomials.
We discuss and extend some of the results obtained in Arakelov inequalities and the uniformization of certain rigid Shimura varieties (math.AG/0503339), restricting ourselves to the two dimensional case, i.e. to surfaces Y mapping generically finite
to the moduli stack of Abelian varieties. In particular we show that Y is a Hilber modular surfaces if and only if the dergee of the Hodge bundle satisfies the Arakelov equality. In the revised version, we corrected some minor mistakes, pointed out by the referee, and we tried to improve the presentation of the text.
We prove stability of logarithmic tangent sheaves of singular hypersurfaces D of the projective space with constraints on the dimension and degree of the singularities of D. As main application, we prove that determinants and symmetric determinants h
ave stable logarithmic tangent sheaves and we describe an open dense piece of the associated moduli space.