ﻻ يوجد ملخص باللغة العربية
We investigate the differential ionization probability of chiral molecules in the strong field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. We observe a variation of the differential ionization probability in a range of several percent. Accordingly, we conclude that the helicity of light is a quantity that should be considered for the theoretical description of the strong field ionization rate of chiral molecules.
The orientation-dependent strong-field ionization of CO molecules is investigated using the fully propagated three-dimensional time-dependent Hartree-Fock theory. The full ionization results are in good agreement with recent experiments. The comparis
The combination of photoelectron spectroscopy and ultrafast light sources is on track to set new standards for detailed interrogation of dynamics and reactivity of molecules. A crucial prerequisite for further progress is the ability to not only dete
We derive here a new highly selective photoelectron-based chirality-sensing technique that utilizes locally-chiral laser pulses. We show that this approach results in strong chiral discrimination, where the standard forwards/backwards asymmetry of ph
Molecules show a much increased multiple ionization rate in a strong laser field as compared to atoms of similar ionization energy. A widely accepted model attributes this to the action of the joint fields of the adjacent ionic core and the laser on
Chirality is ubiquitous in nature and fundamental in science, from particle physics to metamaterials.The most established technique of chiral discrimination - photoabsorption circular dichroism - relies on the magnetic properties of a chiral medium a