ترغب بنشر مسار تعليمي؟ اضغط هنا

Conspiracy and debunking narratives about COVID-19 origination on Chinese social media: How it started and who is to blame

74   0   0.0 ( 0 )
 نشر من قبل Kaiping Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies conspiracy and debunking narratives about COVID-19 origination on a major Chinese social media platform, Weibo, from January to April 2020. Popular conspiracies about COVID-19 on Weibo, including that the virus is human-synthesized or a bioweapon, differ substantially from those in the US. They attribute more responsibility to the US than to China, especially following Sino-US confrontations. Compared to conspiracy posts, debunking posts are associated with lower user participation but higher mobilization. Debunking narratives can be more engaging when they come from women and influencers and cite scientists. Our findings suggest that conspiracy narratives can carry highly cultural and political orientations. Correction efforts should consider political motives and identify important stakeholders to reconstruct international dialogues toward intercultural understanding.



قيم البحث

اقرأ أيضاً

We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction numbers $R_0$ for each social media platform. Moreover, we characterize information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors amplification.
The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing numb er of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.
198 - Elise Jing , Yong-Yeol Ahn 2021
The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individu al behaviors and divergent policy adoption across regions. Here, to better understand such divide, we characterize and compare the pandemic narratives of the Democratic and Republican politicians on social media using novel computational methods including computational framing analysis and semantic role analysis. By analyzing tweets from the politicians in the U.S., including the president, members of Congress, and state governors, we systematically uncover the contrasting narratives in terms of topics, frames, and agents that shape their narratives. We found that the Democrats narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. By using contrasting framing and semantic roles, the Democrats emphasize the governments role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Both parties narratives also include shout-outs to their followers and blaming of the other party. Our findings concretely expose the gaps in the elusive consensus between the two parties. Our methodologies may be applied to computationally study narratives in various domains.
The spread of COVID-19 has sparked racism, hate, and xenophobia in social media targeted at Chinese and broader Asian communities. However, little is known about how racial hate spreads during a pandemic and the role of counterhate speech in mitigati ng the spread. Here we study the evolution and spread of anti-Asian hate speech through the lens of Twitter. We create COVID-HATE, the largest dataset of anti-Asian hate and counterhate spanning three months, containing over 30 million tweets, and a social network with over 87 million nodes. By creating a novel hand-labeled dataset of 2,400 tweets, we train a text classifier to identify hate and counterhate tweets that achieves an average AUROC of 0.852. We identify 891,204 hate and 200,198 counterhate tweets in COVID-HATE. Using this data to conduct longitudinal analysis, we find that while hateful users are less engaged in the COVID-19 discussions prior to their first anti-Asian tweet, they become more vocal and engaged afterwards compared to counterhate users. We find that bots comprise 10.4% of hateful users and are more vocal and hateful compared to non-bot users. Comparing bot accounts, we show that hateful bots are more successful in attracting followers compared to counterhate bots. Analysis of the social network reveals that hateful and counterhate users interact and engage extensively with one another, instead of living in isolated polarized communities. Furthermore, we find that hate is contagious and nodes are highly likely to become hateful after being exposed to hateful content. Importantly, our analysis reveals that counterhate messages can discourage users from turning hateful in the first place. Overall, this work presents a comprehensive overview of anti-Asian hate and counterhate content during a pandemic. The COVID-HATE dataset is available at http://claws.cc.gatech.edu/covid.
During the COVID-19 pandemic, people started to discuss about pandemic-related topics on social media. On subreddit textit{r/COVID19positive}, a number of topics are discussed or being shared, including experience of those who got a positive test res ult, stories of those who presumably got infected, and questions asked regarding the pandemic and the disease. In this study, we try to understand, from a linguistic perspective, the nature of discussions on the subreddit. We found differences in linguistic characteristics (e.g. psychological, emotional and reasoning) across three different categories of topics. We also classified posts into the different categories using SOTA pre-trained language models. Such classification model can be used for pandemic-related research on social media.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا