ﻻ يوجد ملخص باللغة العربية
Less common ligand coordination of transition-metal centers is often associated with peculiar valence-shell electron configurations and outstanding physical properties. One example is the Fe$^+$ ion with linear coordination, actively investigated in the research area of single-molecule magnetism. Here we address the nature of 3$d^9$ states for Cu$^{2+}$ ions sitting in the center of trigonal bipyramidal ligand cages in the quasi-two-dimensional honeycomb compound InCu$_{2/3}$V$_{1/3}$O$_3$, whose unusual magnetic properties were intensively studied in the recent past. In particular, we discuss the interplay of structural effects, electron correlations, and spin-orbit couplings in this material. A relevant computational finding is a different sequence of the Cu ($xz$, $yz$) and ($xy$, $x^2!-!y^2$) levels as compared to existing electronic-structure models, which has implications for the interpretation of various excitation spectra. Spin-orbit interactions, both first- and second-order, turn out to be stronger than previously assumed, suggesting that rather rich single-ion magnetic properties can be in principle achieved also for the 3$d^9$ configuration by properly adjusting the sequence of crystal-field states for such less usual ligand coordination.
We report a combined $^{115}$In NQR, $^{51}$V NMR and $mu$SR spectroscopic study of the low-temperature magnetic properties of InCu$_{2/3}$V$_{1/3}$O$_3$, a quasi-two dimensional (2D) compound comprising in the spin sector a honeycomb lattice of anti
High field electron spin resonance, nuclear magnetic resonance and magnetization studies addressing the ground state of the quasi two-dimensional spin-1/2 honeycomb lattice compound InCu{2/3}V{1/3}O{3} are reported. Uncorrelated finite size structura
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$
We study electronic and magnetic properties of the quasi-one-dimensional spin-1/2 magnet Ba3Cu3Sc4O12 with a distinct orthogonal connectivity of CuO4 plaquettes. An effective low-energy model taking into account spin-orbit coupling was constructed by
Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enormous interest in both fundamental and applied sciences. We report broadband microwave spectroscopy performed on the insulating chiral ferrimagnet Cu$_{2}$OSe