ﻻ يوجد ملخص باللغة العربية
We give in this Chapter an overview of the problem of neutron star mass distribution, the issue of the maximum mass as inferred from the existing sample and the new gravitational wave events, and the connection with the formation events. It is shown that at least two different mass-scales (and possibly three) are favored by Bayesian and frequentist analysis, and the resulting maximum mass on empirical grounds only is $sim 2.5 M_{odot}$, making room for an interpretation of the lighter component of the GW190408 merger as a neutron star (as suggested by the GW event population analysis). We discuss in some length the challenges for a theoretical construction of a stiff equation of state and the status of available supernova explosions (single and binary simulations) and AIC expected to provide the masses at birth.
We conjecture and verify a set of universal relations between global parameters of hot and fast-rotating compact stars, including a relation connecting the masses of the mass-shedding (Kepler) and static configurations. We apply these relations to th
We present in this article an overview of the problem of neutron star masses. After a brief appraisal of the methods employed to determine the masses of neutron stars in binary systems, the existing sample of measured masses is presented, with a high
The observational consequences of the merger scenario for massive star formation are explored and contrasted with the gradual accumulation of mass by accretion. Protostellar mergers may produce high luminosity infrared flares lasting years to centuri
We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent, nuclear equations of state, and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find th
Context. The mass discrepancy in massive O stars represents a long-standing problem in stellar astrophysics with far-reaching implications for the chemical and dynamical feedback in galaxies. Aims. Our goal is to investigate this mass discrepancy by