ترغب بنشر مسار تعليمي؟ اضغط هنا

Muttalib--Borodin plane partitions and the hard edge of random matrix ensembles

246   0   0.0 ( 0 )
 نشر من قبل Dan Betea
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study probabilistic and combinatorial aspects of natural volume-and-trace weighted plane partitions and their continuous analogues. We prove asymptotic limit laws for the largest parts of these ensembles in terms of new and known hard- and soft-edge distributions of random matrix theory. As a corollary we obtain an asymptotic transition between Gumbel and Tracy--Widom GUE fluctuations for the largest part of such plane partitions, with the continuous Bessel kernel providing the interpolation. We interpret our results in terms of two natural models of directed last passage percolation (LPP): a discrete $(max, +)$ infinite-geometry model with rapidly decaying geometric weights, and a continuous $(min, cdot)$ model with power weights.



قيم البحث

اقرأ أيضاً

In this note we study a natural measure on plane partitions giving rise to a certain discrete-time Muttalib-Borodin process (MBP): each time-slice is a discrete version of a Muttalib-Borodin ensemble (MBE). The process is determinantal with explicit time-dependent correlation kernel. Moreover, in the $q to 1$ limit, it converges to a continuous Jacobi-like MBP with Muttalib-Borodin marginals supported on the unit interval. This continuous process is also determinantal with explicit correlation kernel. We study its hard-edge scaling limit (around 0) to obtain a discrete-time-dependent generalization of the classical continuous Bessel kernel of random matrix theory (and, in fact, of the Meijer $G$-kernel as well). We lastly discuss two related applications: random sampling from such processes, and their interpretations as models of directed last passage percolation (LPP). In doing so, we introduce a corner growth model naturally associated to Jacobi processes, a version of which is the usual corner growth of Forrester-Rains in logarithmic coordinates. The aforementioned hard edge limits for our MBPs lead to interesting asymptotics for these LPP models. In particular, a special cases of our LPP asymptotics give rise (via the random matrix Bessel kernel and following Johanssons lead) to an extremal statistics distribution interpolating between the Tracy-Widom GUE and the Gumbel distributions.
We study two families of probability measures on integer partitions, which are Schur measures with parameters tuned in such a way that the edge fluctuations are characterized by a critical exponent different from the generic $1/3$. We find that the f irst part asymptotically follows a higher-order analogue of the Tracy-Widom GUE distribution, previously encountered by Le Doussal, Majumdar and Schehr in quantum statistical physics. We also compute limit shapes, and discuss an exact mapping between one of our families and the multicritical unitary matrix models introduced by Periwal and Shevitz.
The spherical orthogonal, unitary, and symplectic ensembles (SOE/SUE/SSE) $S_beta(N,r)$ consist of $N times N$ real symmetric, complex hermitian, and quaternionic self-adjoint matrices of Frobenius norm $r$, made into a probability space with the uni form measure on the sphere. For each of these ensembles, we determine the joint eigenvalue distribution for each $N$, and we prove the empirical spectral measures rapidly converge to the semicircular distribution as $N to infty$. In the unitary case ($beta=2$), we also find an explicit formula for the empirical spectral density for each $N$.
We prove the edge universality of the beta ensembles for any $betage 1$, provided that the limiting spectrum is supported on a single interval, and the external potential is $mathscr{C}^4$ and regular. We also prove that the edge universality holds f or generalized Wigner matrices for all symmetry classes. Moreover, our results allow us to extend bulk universality for beta ensembles from analytic potentials to potentials in class $mathscr{C}^4$.
144 - B. Feigin , M. Jimbo , T. Miwa 2011
In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal characters. As an application we obtain a Gelfand-Zetlin type basis for a class of irreducible lowest weight $gl_infty$-modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا