ﻻ يوجد ملخص باللغة العربية
We study probabilistic and combinatorial aspects of natural volume-and-trace weighted plane partitions and their continuous analogues. We prove asymptotic limit laws for the largest parts of these ensembles in terms of new and known hard- and soft-edge distributions of random matrix theory. As a corollary we obtain an asymptotic transition between Gumbel and Tracy--Widom GUE fluctuations for the largest part of such plane partitions, with the continuous Bessel kernel providing the interpolation. We interpret our results in terms of two natural models of directed last passage percolation (LPP): a discrete $(max, +)$ infinite-geometry model with rapidly decaying geometric weights, and a continuous $(min, cdot)$ model with power weights.
In this note we study a natural measure on plane partitions giving rise to a certain discrete-time Muttalib-Borodin process (MBP): each time-slice is a discrete version of a Muttalib-Borodin ensemble (MBE). The process is determinantal with explicit
We study two families of probability measures on integer partitions, which are Schur measures with parameters tuned in such a way that the edge fluctuations are characterized by a critical exponent different from the generic $1/3$. We find that the f
The spherical orthogonal, unitary, and symplectic ensembles (SOE/SUE/SSE) $S_beta(N,r)$ consist of $N times N$ real symmetric, complex hermitian, and quaternionic self-adjoint matrices of Frobenius norm $r$, made into a probability space with the uni
We prove the edge universality of the beta ensembles for any $betage 1$, provided that the limiting spectrum is supported on a single interval, and the external potential is $mathscr{C}^4$ and regular. We also prove that the edge universality holds f
In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal