ﻻ يوجد ملخص باللغة العربية
We prove the law of large numbers for the drift of random walks on the two-dimensional lamplighter group, under the assumption that the random walk has finite $(2+epsilon)$-moment. This result is in contrast with classical examples of abelian groups, where the displacement after $n$ steps, normalised by its mean, does not concentrate, and the limiting distribution of the normalised $n$-step displacement admits a density whose support is $[0,infty)$. We study further examples of groups, some with random walks satisfying LLN for drift and other examples where such concentration phenomenon does not hold, and study relation of this property with asymptotic geometry of groups.
Let $X$ be the branching particle diffusion corresponding to the operator $Lu+beta (u^{2}-u)$ on $Dsubseteq mathbb{R}^{d}$ (where $beta geq 0$ and $beta otequiv 0$). Let $lambda_{c}$ denote the generalized principal eigenvalue for the operator $L
We consider a totally monotone capacity on a Polish space and a sequence of bounded p.i.i.d. random variables. We show that, on a full set, any cluster point of empirical averages lies between the lower and the upper Choquet integrals of the random v
This work considers a many-server queueing system in which customers with i.i.d., generally distributed service times enter service in the order of arrival. The dynamics of the system is represented in terms of a process that describes the total numb
A many-server queue operating under the earliest deadline first discipline, where the distributions of service time and deadline are generic, is studied at the law of large numbers scale. Fluid model equations, formulated in terms of the many-server