ﻻ يوجد ملخص باللغة العربية
The paper studies multi-competitive continuous-time epidemic processes in the presence of a shared resource. We consider the setting where multiple viruses are simultaneously prevalent in the population, and the spread occurs due to not only individual-to-individual interaction but also due to individual-to-resource interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the multiple viruses. We classify the equilibria into three classes: a) the healthy state (all viruses are eradicated), b) single-virus endemic equilibria (all but one viruses are eradicated), and c) coexisting equilibria (multiple viruses simultaneously infect separate fractions of the population). We provide i) a sufficient condition for exponential (resp. asymptotic) eradication of a virus; ii) a sufficient condition for the existence, uniqueness and asymptotic stability of a single-virus endemic equilibrium; iii) a necessary and sufficient condition for the healthy state to be the unique equilibrium; and iv) for the bi-virus setting (i.e., two competing viruses), a sufficient condition and a necessary condition for the existence of a coexisting equilibrium. Building on these analytical results, we provide two mitigation strategies: a technique that guarantees convergence to the healthy state; and, in a bi-virus setup, a scheme that employs one virus to ensure that the other virus is eradicated. The results are illustrated in a numerical study of a spread scenario in Stockholm city.
In this paper we study a discrete-time SIS (susceptible-infected-susceptible) model, where the infection and healing parameters and the underlying network may change over time. We provide conditions for the model to be well-defined and study its stab
This paper proposes a nondominated sorting genetic algorithm II (NSGA-II) based approach to determine optimal or near-optimal sizing and siting of multi-purpose (e.g., voltage regulation and loss minimization), community-based, utility-scale shared e
Animal movement networks are essential in understanding and containing the spread of infectious diseases in farming industries. Due to its confidential nature, movement data for the US swine farming population is not readily available. Hence, we prop
When providing bulk power system services, a third-party aggregator could inadvertently cause operational issues at the distribution level. We propose a coordination architecture in which an aggregator and distribution operator coordinate to avoid di
This work mainly investigates the mean-square stability and stabilizability for a single-input single-output networked linear feedback system. The control signal in the networked system is transmitted over an unreliable channel. In this unreliable ch