ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden Quantum Hall Stripes in Al$_{x}$Ga$_{1-x}$As/Al$_{0.24}$Ga$_{0.76}$As Quantum Wells

78   0   0.0 ( 0 )
 نشر من قبل Michael A. Zudov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on transport signatures of hidden quantum Hall stripe (hQHS) phases in high ($N > 2$) half-filled Landau levels of Al$_{x}$Ga$_{1-x}$As/Al$_{0.24}$Ga$_{0.76}$As quantum wells with varying Al mole fraction $x < 10^{-3}$. Residing between the conventional stripe phases (lower $N$) and the isotropic liquid phases (higher $N$), where resistivity decreases as $1/N$, these hQHS phases exhibit isotropic and $N$-independent resistivity. Using the experimental phase diagram we establish that the stripe phases are more robust than theoretically predicted, calling for improved theoretical treatment. We also show that, unlike conventional stripe phases, the hQHS phases do not occur in ultrahigh mobility GaAs quantum wells, but are likely to be found in other systems.

قيم البحث

اقرأ أيضاً

103 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on transport signatures of eight distinct bubble phases in the $N=3$ Landau level of a Al$_{x}$Ga$_{1-x}$As/Al$_{0.24}$Ga$_{0.76}$As quantum well with $x = 0.0015$. These phases occur near partial filling factors $ u^star approx 0.2,(0.8)$ and $ u^star approx 0.3,(0.7)$ and have $M = 2$ and $M = 3$ electrons (holes) per bubble, respectively. We speculate that a small amount of alloy disorder in our sample helps to distinguish these broken symmetry states in low-temperature transport measurements.
77 - P. Pfeffer , W. Zawadzki 2006
A five-level {Pp} model of the band structure for GaAs-type semiconductors is used to describe the spin $g^*$-factor and the cyclotron mass $m^*_c$ of conduction electrons in GaAs/Ga$_{1-x}$Al$_x$As quantum wells in an external magnetic field paralle l to the growth direction. It is demonstrated that the previous theory of the $g^*$-factor in heterostructures is inadequate. Our approach is based on an iteration procedure of solving 14 coupled differential {Pp} equations. The applicability of the iteration procedure is verified. The final eigenenergy problem for the conduction subbands is reduced to two differential equations for the spin-up and spin-down states of consecutive Landau levels. It is shown that the bulk inversion asymmetry of III-V compounds is of importance for the spin $g^*$-factor. Our theory with no adjustable parameters gives an excellent description of experimental data on the electron spin $g^*$-factor in GaAs/Ga$_{0.67}$Al$_{0.33}$As rectangular quantum wells for different well widths between 3 and 12 nm. The same theory describes very well experimental cyclotron masses in GaAs/Ga$_{0.74}$Al$_{0.26}$As quantum wells for the well widths between 6 and 37 nm.
76 - S. P. Shukla 1999
We report tilted-field magnetotransport measurements of two-dimensional electron systems in a 200 Angstrom-wide Al(0.13)Ga(0.87)As quantum well. We extract the energy gap for the quantum Hall state at Landau level filling u =1 as a function of the t ilt angle. The relatively small effective Lande g-factor (g ~ 0.043) of the structure leads to skyrmionic excitations composed of the largest number of spins yet reported (s ~ 50). Although consistent with the skyrmion size observed, Hartree-Fock calculations, even after corrections, significantly overestimate the energy gaps over the entire range of our data.
The electron-electron interaction quantum correction to the conductivity of the gated double well Al$_x$Ga$_{1-x}$As/GaAs structures is investigated experimentally. The analysis of the temperature and magnetic field dependences of the conductivity te nsor allows us to obtain reliably the diffusion part of the interaction correction for the regimes when the structure is balanced and when only one quantum well is occupied. The surprising result is that the interaction correction does not reveal resonant behavior; it is practically the same for both regimes.
79 - T. Wojtowicz , W.L. Lim , X. Liu 2003
The effect of modulation doping by Be on the ferromagnetic properties of Ga(1-x)Mn(x)As is investigated in Ga(1-x)Mn(x)As/Ga(1-y)Al(y)As heterojunctions and quantum wells. Introducing Be acceptors into the Ga(1-y)Al(y)As barriers leads to an increase of the Curie temperature T_C of Ga(1-x)Mn(x)As, from 70 K in undoped structures to over 100 K with the modulation doping. This increase is qualitatively consistent with a multi-band mean field theory simulation of carrier-mediated ferromagnetism. An important feature is that the increase of T_C occurs only in those structures where the modulation doping is introduced after the deposition of the magnetic layer, but not when the Be-doped layer is grown first. This behavior is expected from the strong sensitivity of Mn interstitial formation to the value of the Fermi energy during growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا