ﻻ يوجد ملخص باللغة العربية
Within the landscape of modified theories of gravity, progress in understanding the behaviour of, and developing tests for, screening mechanisms has been hindered by the complexity of the field equations involved, which are nonlinear in nature and characterised by a large hierarchy of scales. This is especially true of Vainshtein screening, where the fifth force is suppressed by high-order derivative terms which dominate within a radius much larger than the size of the source, known as the Vainshtein radius. In this work, we present the numerical code $varphi$enics, building on the FEniCS library, to solve the full equations of motion from two theories of interest for screening: a model containing high-order derivative operators in the equation of motion and one characterised by nonlinear self-interactions in two coupled scalar fields. We also include functionalities that allow the computation of higher-order operators of the scalar fields in post-processing, enabling us to check that the profiles we find are consistent solutions within the effective field theory. These two examples illustrate the different challenges experienced when trying to simulate such theories numerically, and we show how these are addressed within this code. The examples in this paper assume spherical symmetry, but the techniques may be straightforwardly generalised to asymmetric configurations. This article therefore also provides a worked example of how the finite element method can be employed to solve the screened equations of motion. $varphi$enics is publicly available and can be adapted to solve other theories of screening.
We study the Vainshtein mechanism in the context of slowly rotating stars in scalar-tensor theories. While the Vainshtein screening is well established for spherically symmetric spacetimes, we examine its validity in the axisymmetric case for slowly
We investigate the wave effects of gravitational waves (GWs) using numerical simulations with the finite element method (FEM) based on the publicly available code {it deal.ii}. We robustly test our code using a point source monochromatic spherical wa
The Vainshtein screening mechanism relies on nonlinear interaction terms becoming dominant close to a compact source. However, theories displaying this mechanism are generally understood to be low-energy theories: it is unclear that operators emergin
We study the screening mechanism in the most general scalar-tensor theories that leave gravitational waves unaffected and are thus compatible with recent LIGO/Virgo observations. Using the effective field theory of dark energy approach, we consider t
Gravitational theories differing from General Relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a screening mechanism is needed to suppress, on small scales,