ﻻ يوجد ملخص باللغة العربية
We investigate how quantum dynamics affects the propagation of a scalar field in Lorentzian AdS. We work in momentum space, in which the propagator admits two spectral representations (denoted conformal and momentum) in addition to a closed-form one, and all have a simple split structure. Focusing on scalar bubbles, we compute the imaginary part of the self-energy $ {rm Im} Pi$ in the three representations, which involves the evaluation of seemingly very different objects. We explicitly prove their equivalence in any dimension, and derive some elementary and asymptotic properties of $ {rm Im} Pi$. Using a WKB-like approach in the timelike region, we evaluate the propagator dressed with the imaginary part of the self-energy. We find that the dressing from loops exponentially dampens the propagator when one of the endpoints is in the IR region, rendering this region opaque to propagation. This suppression may have implications for field-theoretical model-building in AdS. We argue that in the effective theory (EFT) paradigm, opacity of the IR region induced by higher dimensional operators censors the region of EFT breakdown. This confirms earlier expectations from the literature. Specializing to AdS$_5$, we determine a universal contribution to opacity from gravity.
We consider holographic CFTs and study their large $N$ expansion. We use Polyakov-Mellin bootstrap to extract the CFT data of all operators, including scalars, till $O(1/N^4)$. We add a contact term in Mellin space, which corresponds to an effective
We study the Wilson loops and defects in the three dimensional QFT from the D-branes in the AdS(4) x CP**3 geometry. We find out explicit D-brane configurations in the bulk which correspond to both straight and circular Wilson lines extended to the b
The 1/2-BPS Wilson loop in $mathcal{N}=4$ supersymmetric Yang-Mills theory is an important and well-studied example of conformal defect. In particular, much work has been done for the correlation functions of operator insertions on the Wilson loop in
We study the $6j$ symbol for the conformal group, and its appearance in three seemingly unrelated contexts: the SYK model, conformal representation theory, and perturbative amplitudes in AdS. The contribution of the planar Feynman diagrams to the thr
We study at quantum level correlators of supersymmetric Wilson loops with contours lying on Hopf fibers of $S^3$. In $mathcal{N}=4$ SYM theory the strong coupling analysis can be performed using the AdS/CFT correspondence and a connected classical st