ﻻ يوجد ملخص باللغة العربية
We study the algebraic structure of the eigenvalues of a Hamiltonian that corresponds to a many-body fermionic system. As the Hamiltonian is quadratic in fermion creation and/or annihilation operators, the system is exactly integrable and the complete single fermion excitation energy spectrum is constructed using the non-interacting fermions that are eigenstates of the quadratic matrix related to the system Hamiltonian. Connection to the Riemann Hypothesis is discussed.
In this article, we will prove Riemann Hypothesis by using the mean value theorem of integrals. The function $ xi(s) $ is introduced by Riemann, which zeros are identical equal to non-trivial zeros of zeta function.The function $ xi(s) $ is an entire
Starting from the symmetrical reflection functional equation of the zeta function, we have found that the sigma values satisfying zeta(s) = 0 must also satisfy both |zeta(s)| = |zeta(1 - s)| and |gamma(s/2)zeta(s)| = |gamma((1 - s)/2)zeta(1 - s)|. We
The Riemann hypothesis is equivalent to the $varpi$-form of the prime number theorem as $varpi(x) =O(xsp{1/2} logsp{2} x)$, where $varpi(x) =sumsb{nle x} bigl(Lambda(n) -1big)$ with the sum running through the set of all natural integers. Let ${maths
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number