ترغب بنشر مسار تعليمي؟ اضغط هنا

On the 2-colorability of random hypergraphs

141   0   0.0 ( 0 )
 نشر من قبل Cristopher Moore
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A 2-coloring of a hypergraph is a mapping from its vertices to a set of two colors such that no edge is monochromatic. Let $H_k(n,m)$ be a random $k$-uniform hypergraph on $n$ vertices formed by picking $m$ edges uniformly, independently and with replacement. It is easy to show that if $r geq r_c = 2^{k-1} ln 2 - (ln 2) /2$, then with high probability $H_k(n,m=rn)$ is not 2-colorable. We complement this observation by proving that if $r leq r_c - 1$ then with high probability $H_k(n,m=rn)$ is 2-colorable.



قيم البحث

اقرأ أيضاً

Suppose that you add rigid bars between points in the plane, and suppose that a constant fraction $q$ of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph $G in mathcal{G}(n,c/n)$ the threshold value of $c$ for the appearance of a linear-sized rigid component as a function of $q$, generalizing results of Kasiviswanathan et al. We show that this appearance of a giant component undergoes a continuous transition for $q leq 1/2$ and a discontinuous transition for $q > 1/2$. In our proofs, we introduce a generalized notion of orientability interpolating between 1- and 2-orientability, of cores interpolating between 2-core and 3-core, and of extended cores interpolating between 2+1-core and 3+2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of Kasiviswanathan et al. about the size of the 3+2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest.
In this paper, we study the spectra of regular hypergraphs following the definitions from Feng and Li (1996). Our main result is an analog of Alons conjecture for the spectral gap of the random regular hypergraphs. We then relate the second eigenvalu es to both its expansion property and the mixing rate of the non-backtracking random walk on regular hypergraphs. We also prove the spectral gap for the non-backtracking operator of a random regular hypergraph introduced in Angelini et al. (2015). Finally, we obtain the convergence of the empirical spectral distribution (ESD) for random regular hypergraphs in different regimes. Under certain conditions, we can show a local law for the ESD.
We study in this paper the structure of solutions in the random hypergraph coloring problem and the phase transitions they undergo when the density of constraints is varied. Hypergraph coloring is a constraint satisfaction problem where each constrai nt includes $K$ variables that must be assigned one out of $q$ colors in such a way that there are no monochromatic constraints, i.e. there are at least two distinct colors in the set of variables belonging to every constraint. This problem generalizes naturally coloring of random graphs ($K=2$) and bicoloring of random hypergraphs ($q=2$), both of which were extensively studied in past works. The study of random hypergraph coloring gives us access to a case where both the size $q$ of the domain of the variables and the arity $K$ of the constraints can be varied at will. Our work provides explicit values and predictions for a number of phase transitions that were discovered in other constraint satisfaction problems but never evaluated before in hypergraph coloring. Among other cases we revisit the hypergraph bicoloring problem ($q=2$) where we find that for $K=3$ and $K=4$ the colorability threshold is not given by the one-step-replica-symmetry-breaking analysis as the latter is unstable towards more levels of replica symmetry breaking. We also unveil and discuss the coexistence of two different 1RSB solutions in the case of $q=2$, $K ge 4$. Finally we present asymptotic expansions for the density of constraints at which various phase transitions occur, in the limit where $q$ and/or $K$ diverge.
In this paper we study the performance of the quantum adiabatic algorithm on random instances of two combinatorial optimization problems, 3-regular 3-XORSAT and 3-regular Max-Cut. The cost functions associated with these two clause-based optimization problems are similar as they are both defined on 3-regular hypergraphs. For 3-regular 3-XORSAT the clauses contain three variables and for 3-regular Max-Cut the clauses contain two variables. The quantum adiabatic algorithms we study for these two problems use interpolating Hamiltonians which are stoquastic and therefore amenable to sign-problem free quantum Monte Carlo and quantum cavity methods. Using these techniques we find that the quantum adiabatic algorithm fails to solve either of these problems efficiently, although for different reasons.
Given integers $k,j$ with $1le j le k-1$, we consider the length of the longest $j$-tight path in the binomial random $k$-uniform hypergraph $H^k(n,p)$. We show that this length undergoes a phase transition from logarithmic length to linear and deter mine the critical threshold, as well as proving upper and lower bounds on the length in the subcritical and supercritical ranges. In particular, for the supercritical case we introduce the `Pathfinder algorithm, a depth-first search algorithm which discovers $j$-tight paths in a $k$-uniform hypergraph. We prove that, in the supercritical case, with high probability this algorithm will find a long $j$-tight path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا