ترغب بنشر مسار تعليمي؟ اضغط هنا

Smoothness of densities for path-dependent SDEs under Hormanders condition

90   0   0.0 ( 0 )
 نشر من قبل Evelina Shamarova
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish the existence of smooth densities for solutions to a broad class of path-dependent SDEs under a Hormander-type condition. The classical scheme based on the reduced Malliavin matrix turns out to be unavailable in the path-dependent context. We approach the problem by lifting the given $n$-dimensional path-dependent SDE into a suitable $L_p$-type Banach space in such a way that the lifted Banach-space-valued equation becomes a state-dependent reformulation of the original SDE. We then formulate Hormanders bracket condition in $mathbb R^n$ for non-anticipative SDE coefficients defining the Lie brackets in terms of vertical derivatives in the sense of the functional It^o calculus. Our pathway to the main result engages an interplay between the analysis of SDEs in Banach spaces, Malliavin calculus, and rough path techniques.



قيم البحث

اقرأ أيضاً

125 - Panpan Ren , Fen-Fen Yang 2018
The path independence of additive functionals for SDEs driven by the G-Brownian motion is characterized by nonlinear PDEs. The main result generalizes the existing ones for SDEs driven by the standard Brownian motion.
In this paper, we study (strong and weak) existence and uniqueness of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributionsof a continuous function.
In this paper, we first prove that the existence of a solution of SDEs under the assumptions that the drift coefficient is of linear growth and path--dependent, and diffusion coefficient is bounded, uniformly elliptic and Holder continuous. We apply Gaussian upper bound for a probability density function of a solution of SDE without drift coefficient and local Novikov condition, in order to use Maruyama--Girsanov transformation. The aim of this paper is to prove the existence with explicit representations (under linear/super--linear growth condition), Gaussian two--sided bound and Holder continuity (under sub--linear growth condition) of a probability density function of a solution of SDEs with path--dependent drift coefficient. As an application of explicit representation, we provide the rate of convergence for an Euler--Maruyama (type) approximation, and an unbiased simulation scheme.
247 - Valentin Konakov 2010
Consider a multidimensional SDE of the form $X_t = x+int_{0}^{t} b(X_{s-})ds+int{0}^{t} f(X_{s-})dZ_s$ where $(Z_s)_{sge 0}$ is a symmetric stable process. Under suitable assumptions on the coefficients the unique strong solution of the above equatio n admits a density w.r.t. the Lebesgue measure and so does its Euler scheme. Using a parametrix approach, we derive an error expansion at order 1 w.r.t. the time step for the difference of these densities.
The theory of one-dimensional stochastic differential equations driven by Brownian motion is classical and has been largely understood for several decades. For stochastic differential equations with jumps the picture is still incomplete, and even som e of the most basic questions are only partially understood. In the present article we study existence and uniqueness of weak solutions to [ {rm d}Z_t=sigma(Z_{t-}){rm d} X_t ]driven by a (symmetric) $alpha$-stable Levy process, in the spirit of the classical Engelbert-Schmidt time-change approach. Extending and completing results of Zanzotto we derive a complete characterisation for existence und uniqueness of weak solutions for $alphain(0,1)$. Our approach is not based on classical stochastic calculus arguments but on the general theory of Markov processes. We proof integral tests for finiteness of path integrals under minimal assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا