ترغب بنشر مسار تعليمي؟ اضغط هنا

Actions of symplectic homeomorphisms/diffeomorphisms on foliations by curves in dimension 2

287   0   0.0 ( 0 )
 نشر من قبل Marie-Claude Arnaud
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The two main results of this paper concern the regularity of the invariant foliation of a C0-integrable symplectic twist diffeomorphisms of the 2-dimensional annulus, namely that $bullet$ the generating function of such a foliation is C1 ; $bullet$ the foliation is H{o}lder with exponent 1/2. We also characterize foliations by graphs that are straightenable via a symplectic homeomorphism and prove that every symplectic homeomorphism that leaves invariant all the leaves of a straightenable foliation has Arnold-Liouville coordinates, in which the Dynamics restricted to the leaves is conjugated to a rotation. We deduce that every Lipschitz integrable symplectic twist diffeomorphisms of the 2-dimensional annulus has Arnold-Liouville coordinates and then provide examples of strange Lipschitz foliations in smooth curves that cannot be straightened by a symplectic homeomorphism and cannot be invariant by a symplectic twist diffeomorphism.This article is a part of another preprint of the authors, entitled On the transversal dependence of weak K.A.M. solutions for symplectic twist maps, after rewriting ant adding of the H{o}lder part.



قيم البحث

اقرأ أيضاً

206 - Shigenori Matsumoto 2014
Denote by $DC(M)_0$ the identity component of the group of the compactly supported $C^r$ diffeomorphisms of a connected $C^infty$ manifold $M$. We show that if $dim(M)geq2$ and $r eq dim(M)+1$, then any homomorphism from $DC(M)_0$ to ${Diff}^1(R)$ or ${Diff}^1(S^1)$ is trivial.
160 - Frederic Le Roux 2009
In 1980, Albert Fathi asked whether the group of area-preserving homeomorphisms of the 2-disc that are the identity near the boundary is a simple group. In this paper, we show that the simplicity of this group is equivalent to the following fragmenta tion property in the group of compactly supported, area preserving diffeomorphisms of the plane: there exists a constant m such that every element supported on a disc D is the product of at most m elements supported on topological discs whose area are half the area of D.
We study the conormal sheaves and singular schemes of 1-dimensional foliations on smooth projective varieties $X$ of dimension 3 and Picard rank 1. We prove that if the singular scheme has dimension 0, then the conormal sheaf is $mu$-stable whenever the tangent bundle $TX$ is stable, and apply this fact to the characterization of certain irreducible components of the moduli space of rank 2 reflexive sheaves on $mathbb{P}^3$ and on a smooth quadric hypersurface $Q_3subsetmathbb{P}^4$. Finally, we give a classification of local complete intersection foliations, that is, foliations with locally free conormal sheaves, of degree 0 and 1 on $Q_3$.
Given a Sobolev homeomorphism $fin W^{2,1}$ in the plane we find a piecewise quadratic homeomorphism that approximates it up to a set of $epsilon$ measure. We show that this piecewise quadratic map can be approximated by diffeomorphisms in the $W^{2,1}$ norm on this set.
Metric entropies along a hierarchy of unstable foliations are investigated for $C^1$ diffeomorphisms with dominated splitting. The analogues of Ruelles inequality and Pesins formula, which relate the metric entropy and Lyapunov exponents in each hierarchy, are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا