ﻻ يوجد ملخص باللغة العربية
Image segmentation is a fundamental topic in image processing and has been studied for many decades. Deep learning-based supervised segmentation models have achieved state-of-the-art performance but most of them are limited by using pixel-wise loss functions for training without geometrical constraints. Inspired by Eulers Elastica model and recent active contour models introduced into the field of deep learning, we propose a novel active contour with elastica (ACE) loss function incorporating Elastica (curvature and length) and region information as geometrically-natural constraints for the image segmentation tasks. We introduce the mean curvature i.e. the average of all principal curvatures, as a more effective image prior to representing curvature in our ACE loss function. Furthermore, based on the definition of the mean curvature, we propose a fast solution to approximate the ACE loss in three-dimensional (3D) by using Laplace operators for 3D image segmentation. We evaluate our ACE loss function on four 2D and 3D natural and biomedical image datasets. Our results show that the proposed loss function outperforms other mainstream loss functions on different segmentation networks. Our source code is available at https://github.com/HiLab-git/ACELoss.
The performance of deep segmentation models often degrades due to distribution shifts in image intensities between the training and test data sets. This is particularly pronounced in multi-centre studies involving data acquired using multi-vendor sca
Deep learning has been widely used for medical image segmentation and a large number of papers has been presented recording the success of deep learning in the field. In this paper, we present a comprehensive thematic survey on medical image segmenta
Accurate image segmentation is crucial for medical imaging applications. The prevailing deep learning approaches typically rely on very large training datasets with high-quality manual annotations, which are often not available in medical imaging. We
Automated and accurate 3D medical image segmentation plays an essential role in assisting medical professionals to evaluate disease progresses and make fast therapeutic schedules. Although deep convolutional neural networks (DCNNs) have widely applie
Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less out