ﻻ يوجد ملخص باللغة العربية
Recently, it was shown that vector beams can be utilized for fast kinematic sensing via measurements of their global polarization state [Optica 2(10), 864 (2015)]. The method relies on correlations between the spatial and polarization degrees of freedom of the illuminating field which result from its nonseparable mode structure. Here, we extend the method to the nonparaxial regime. We study experimentally and theoretically the far-field polarization state generated by the scattering of a dielectric microsphere in a tightly focused vector beam as a function of the particle position. Using polarization measurements only, we demonstrate position sensing of a Mie particle in three dimensions. Our work extends the concept of back focal plane interferometry and highlights the potential of polarization analysis in optical tweezers employing structured light.
Spin-orbital coupling and interaction as intrinsic light fields characteristics have been extensively studied. Previous studies involve the spin angular momentum (SAM) carried by circular polarization and orbital angular momentum (OAM) associated wit
We show that the optical force field in optical tweezers with elliptically polarized beams has the opposite handedness for a wide range of particle sizes and for the most common configurations. Our method is based on the direct observation of the par
In the analysis of the on-axis intensity for a highly focused optical field it is highly desirable to deal with effective relations aimed at characterizing the field behavior in a rather simple fashion. Here, a novel and adequate measure for the size
Photonic molecules are composed of two or more optical resonators, arranged such that some of the modes of each resonator are coupled to those of the other. Such structures have been used for emulating the behaviour of two-level systems, lasing, and