ترغب بنشر مسار تعليمي؟ اضغط هنا

Small Noisy and Perspective Face Detection using Deformable Symmetric Gabor Wavelet Network

49   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face detection and tracking in low resolution image is not a trivial task due to the limitation in the appearance features for face characterization. Moreover, facial expression gives additional distortion on this small and noisy face. In this paper, we propose deformable symmetric Gabor wavelet network face model for face detection in low resolution image. Our model optimizes the rotation, translation, dilation, perspective and partial deformation amount of the face model with symmetry constraints. Symmetry constraints help our model to be more robust to noise and distortion. Experimental results on our low resolution face image dataset and videos show promising face detection and tracking results under various challenging conditions.

قيم البحث

اقرأ أيضاً

In this paper, a multi-resolution feature extraction algorithm for face recognition is proposed based on two-dimensional discrete wavelet transform (2D-DWT), which efficiently exploits the local spatial variations in a face image. For the purpose of feature extraction, instead of considering the entire face image, an entropy-based local band selection criterion is developed, which selects high-informative horizontal segments from the face image. In order to capture the local spatial variations within these highinformative horizontal bands precisely, the horizontal band is segmented into several small spatial modules. Dominant wavelet coefficients corresponding to each local region residing inside those horizontal bands are selected as features. In the selection of the dominant coefficients, a threshold criterion is proposed, which not only drastically reduces the feature dimension but also provides high within-class compactness and high between-class separability. A principal component analysis is performed to further reduce the dimensionality of the feature space. Extensive experimentation is carried out upon standard face databases and a very high degree of recognition accuracy is achieved by the proposed method in comparison to those obtained by some of the existing methods.
Facial analysis has attracted much attention in the technology for human-machine interface. Different methods of classification based on sparse representation and Gabor kernels have been widely applied in the fields of facial analysis. However, most of these methods treat face from a whole view standpoint. In terms of the importance of different facial views, in this paper, we present multi-view face analysis based on sparse representation and Gabor wavelet coefficients. To evaluate the performance, we conduct face analysis experiments including face recognition (FR) and face expression recognition (FER) on JAFFE database. Experiments are conducted from two parts: (1) Face images are divided into three facial parts which are forehead, eye and mouth. (2) Face images are divided into 8 parts by the orientation of Gabor kernels. Experimental results demonstrate that the proposed methods can significantly boost the performance and perform better than the other methods.
Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shap es of objects with deformable parts. Without additional annotations, it learns to focus on discriminative elements and to align them, and simultaneously brings more invariance for classification and geometric information to refine localization. DP-FCN is composed of three main modules: a Fully Convolutional Network to efficiently maintain spatial resolution, a deformable part-based RoI pooling layer to optimize positions of parts and build invariance, and a deformation-aware localization module explicitly exploiting displacements of parts to improve accuracy of bounding box regression. We experimentally validate our model and show significant gains. DP-FCN achieves state-of-the-art performances of 83.1% and 80.9% on PASCAL VOC 2007 and 2012 with VOC data only.
Faster RCNN has achieved great success for generic object detection including PASCAL object detection and MS COCO object detection. In this report, we propose a detailed designed Faster RCNN method named FDNet1.0 for face detection. Several technique s were employed including multi-scale training, multi-scale testing, light-designed RCNN, some tricks for inference and a vote-based ensemble method. Our method achieves two 1th places and one 2nd place in three tasks over WIDER FACE validation dataset (easy set, medium set, hard set).
With the proliferation of face image manipulation (FIM) techniques such as Face2Face and Deepfake, more fake face images are spreading over the internet, which brings serious challenges to public confidence. Face image forgery detection has made cons iderable progresses in exposing specific FIM, but it is still in scarcity of a robust fake face detector to expose face image forgeries under complex scenarios such as with further compression, blurring, scaling, etc. Due to the relatively fixed structure, convolutional neural network (CNN) tends to learn image content representations. However, CNN should learn subtle manipulation traces for image forensics tasks. Thus, we propose an adaptive manipulation traces extraction network (AMTEN), which serves as pre-processing to suppress image content and highlight manipulation traces. AMTEN exploits an adaptive convolution layer to predict manipulation traces in the image, which are reused in subsequent layers to maximize manipulation artifacts by updating weights during the back-propagation pass. A fake face detector, namely AMTENnet, is constructed by integrating AMTEN with CNN. Experimental results prove that the proposed AMTEN achieves desirable pre-processing. When detecting fake face images generated by various FIM techniques, AMTENnet achieves an average accuracy up to 98.52%, which outperforms the state-of-the-art works. When detecting face images with unknown post-processing operations, the detector also achieves an average accuracy of 95.17%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا