ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial defense for deep speaker recognition using hybrid adversarial training

71   0   0.0 ( 0 )
 نشر من قبل Monisankha Pal
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural network based speaker recognition systems can easily be deceived by an adversary using minuscule imperceptible perturbations to the input speech samples. These adversarial attacks pose serious security threats to the speaker recognition systems that use speech biometric. To address this concern, in this work, we propose a new defense mechanism based on a hybrid adversarial training (HAT) setup. In contrast to existing works on countermeasures against adversarial attacks in deep speaker recognition that only use class-boundary information by supervised cross-entropy (CE) loss, we propose to exploit additional information from supervised and unsupervised cues to craft diverse and stronger perturbations for adversarial training. Specifically, we employ multi-task objectives using CE, feature-scattering (FS), and margin losses to create adversarial perturbations and include them for adversarial training to enhance the robustness of the model. We conduct speaker recognition experiments on the Librispeech dataset, and compare the performance with state-of-the-art projected gradient descent (PGD)-based adversarial training which employs only CE objective. The proposed HAT improves adversarial accuracy by absolute 3.29% and 3.18% for PGD and Carlini-Wagner (CW) attacks respectively, while retaining high accuracy on benign examples.



قيم البحث

اقرأ أيضاً

Robust speaker recognition, including in the presence of malicious attacks, is becoming increasingly important and essential, especially due to the proliferation of several smart speakers and personal agents that interact with an individuals voice co mmands to perform diverse, and even sensitive tasks. Adversarial attack is a recently revived domain which is shown to be effective in breaking deep neural network-based classifiers, specifically, by forcing them to change their posterior distribution by only perturbing the input samples by a very small amount. Although, significant progress in this realm has been made in the computer vision domain, advances within speaker recognition is still limited. The present expository paper considers several state-of-the-art adversarial attacks to a deep speaker recognition system, employing strong defense methods as countermeasures, and reporting on several ablation studies to obtain a comprehensive understanding of the problem. The experiments show that the speaker recognition systems are vulnerable to adversarial attacks, and the strongest attacks can reduce the accuracy of the system from 94% to even 0%. The study also compares the performances of the employed defense methods in detail, and finds adversarial training based on Projected Gradient Descent (PGD) to be the best defense method in our setting. We hope that the experiments presented in this paper provide baselines that can be useful for the research community interested in further studying adversarial robustness of speaker recognition systems.
In this paper, we address the problem of speaker recognition in challenging acoustic conditions using a novel method to extract robust speaker-discriminative speech representations. We adopt a recently proposed unsupervised adversarial invariance arc hitecture to train a network that maps speaker embeddings extracted using a pre-trained model onto two lower dimensional embedding spaces. The embedding spaces are learnt to disentangle speaker-discriminative information from all other information present in the audio recordings, without supervision about the acoustic conditions. We analyze the robustness of the proposed embeddings to various sources of variability present in the signal for speaker verification and unsupervised clustering tasks on a large-scale speaker recognition corpus. Our analyses show that the proposed system substantially outperforms the baseline in a variety of challenging acoustic scenarios. Furthermore, for the task of speaker diarization on a real-world meeting corpus, our system shows a relative improvement of 36% in the diarization error rate compared to the state-of-the-art baseline.
In real-life applications, the performance of speaker recognition systems always degrades when there is a mismatch between training and evaluation data. Many domain adaptation methods have been successfully used for eliminating the domain mismatches in speaker recognition. However, usually both training and evaluation data themselves can be composed of several subsets. These inner variances of each dataset can also be considered as different domains. Different distributed subsets in source or target domain dataset can also cause multi-domain mismatches, which are influential to speaker recognition performance. In this study, we propose to use adversarial training for multi-domain speaker recognition to solve the domain mismatch and the dataset variance problems. By adopting the proposed method, we are able to obtain both multi-domain-invariant and speaker-discriminative speech representations for speaker recognition. Experimental results on DAC13 dataset indicate that the proposed method is not only effective to solve the multi-domain mismatch problem, but also outperforms the compared unsupervised domain adaptation methods.
Attacking deep learning based biometric systems has drawn more and more attention with the wide deployment of fingerprint/face/speaker recognition systems, given the fact that the neural networks are vulnerable to the adversarial examples, which have been intentionally perturbed to remain almost imperceptible for human. In this paper, we demonstrated the existence of the universal adversarial perturbations~(UAPs) for the speaker recognition systems. We proposed a generative network to learn the mapping from the low-dimensional normal distribution to the UAPs subspace, then synthesize the UAPs to perturbe any input signals to spoof the well-trained speaker recognition model with high probability. Experimental results on TIMIT and LibriSpeech datasets demonstrate the effectiveness of our model.
The goal of this work is to train robust speaker recognition models without speaker labels. Recent works on unsupervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and a cross-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceed that of humans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا