ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistance oscillation study of the half-quantum vortex in doubly connected mesoscopic superconducting cylinders of Sr2RuO4

148   0   0.0 ( 0 )
 نشر من قبل Ying Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation of the highly unusual half-quantum vortex (HQV) in a single crystalline superconductor excludes unequivocally the spin-singlet symmetry of the superconducting order parameter. HQVs were observed previously in mesoscopic samples of Sr2RuO4 in cantilever torque magnetometry measurements, thus providing direct evidence for spin-triplet pairing in the material. In addition, it raised important questions on HQV, including its stability and dynamics. These issues have remained largely unexplored, in particular, experimentally. We report in this paper the detection of HQVs in mesoscopic, doubly connected cylinders of single-crystalline Sr2RuO4 of a mesoscopic size and the examination of the effect of the in-plane magnetic field needed for the observation of the HQV by magnetoresistance (MR) oscillations measurements. Several distinct features found in our data, especially a dip and secondary peaks in the MR oscillations seen only in the presence of a sufficiently large in-plane magnetic field as well as a large measurement current, are linked to the formation of the HQV fluxoid state in and crossing of an Abrikosov HQV through the sample. The conclusion is drawn from the analysis of our data using a model of thermally activated vortex crossing overcoming a free-energy barrier which is modulated by the applied magnetic flux enclosed in the cylinder as well as the measurement current. Evidence for the trapping of an HQV fluxoid state in the sample was also found. Our observation of the HQV in mesoscopic Sr2RuO4 provided not only additional evidence for spin-triplet superconductivity in Sr2RuO4 but also insights into the physics of HQV, including its spontaneous spin polarization, stability, and dynamics. Our study also revealed a possible effect of the measurement current on the magnitude of the spontaneous spin polarization associated with the HQV.

قيم البحث

اقرأ أيضاً

Numerical calculations on a mesoscopic ring of a type II superconductor in the London limit suggest that an Abrikosov vortex can be trapped in such a structure above a critical magnetic field and generate a phase shift in the magnetoresistance oscill ations. We prepared submicron-sized superconducting loops of single-crystal, type II superconductor NbSe$_2$ and measured magnetoresistance oscillations resulting from vortices crossing the loops. The free energy barrier for vortex crossing determines the crossing rate and is periodically modulated by the external magnetic flux threading the loop. We demonstrated experimentally that the crossing of vortices can be directed at a pair of constrictions in the loop, leading to more pronounced magnetoresistance oscillations than those in a uniform ring. The vortex trapping in both a simple ring and a ring featuring two constrictions was found to result in a phase shift in the magnetoresistance oscillations as predicted in the numerical calculations. The controlled crossing and trapping of vortices demonstrated in our NbSe$_2$ devices provide a starting point for the manipulation of individual Abrikosov vortices, which is useful for future technologies.
73 - W. V. Pogosov 2001
Vortex structures in mesoscopic cylinder placed in external magnetic field are studied under the general de Gennes boundary condition for the order parameter corresponding to the suppression of surface superconductivity. The Ginzburg-Landau equations are solved based on trial functions for the order parameter for vortex-free, single-vortex, multivortex, and giant vortex phases. The equilibrium vortex diagrams in the plane of external field and cylinder radius and magnetization curves are calculated at different values of de Gennes extrapolation length characterizing the boundary condition for the order parameter. The comparison of the obtained variational results with some available exact solutions shows good accuracy of our approach.
Using time-dependent Ginzburg-Landau theory we demonstrate that the Aharonov-Bohm (AB) effect, resulting from a Berry phase shift of the (macroscopic) wavefunction, is revealed through the dynamics of topological phase defects present in that same wa vefunction. We study vortices and antivortices on the surface of a hollow superconducting cylinder, moving on circular orbits as they are subjected to the force from the current flowing parallel to the cylinder axis. Due to the AB effect the orbit deflections, caused by a magnetic field component along the cylinder axis, become periodic as a function of field, leading to strong and robust resistance oscillations.
101 - X. Cai , Y. A. Ying , N. E. Staley 2012
Odd-parity, spin-triplet superconductor Sr2RuO4 has been found to feature exotic vortex physics including half-flux quanta trapped in a doubly connected sample and the formation of vortex lattices at low fields. The consequences of these vortex state s on the low-temperature magnetoresistive behavior of mesoscopic samples of Sr2RuO4 were investigated in this work using ring device fabricated on mechanically exfoliated single crystals of Sr2RuO4 by photolithography and focused ion beam. With the magnetic field applied perpendicular to the in-plane direction, thin-wall rings of Sr2RuO4 were found to exhibit pronounced quantum oscillations with a conventional period of the full-flux quantum even though the unexpectedly large amplitude and the number of oscillations suggest the observation of vortex-flow-dominated magnetoresistance oscillations rather than a conventional Little-Parks effect. For rings with a thick wall, two distinct periods of quantum oscillations were found in high and low field regimes, respectively, which we argue to be associated with the lock-in of a vortex lattice in these thick-wall rings. No evidence for half-flux-quantum resistance oscillations were identified in any sample measured so far without the presence of an in-plane field.
101 - N.S. Lin , V.R. Misko , 2009
The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occu rs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا