ﻻ يوجد ملخص باللغة العربية
The observation of the highly unusual half-quantum vortex (HQV) in a single crystalline superconductor excludes unequivocally the spin-singlet symmetry of the superconducting order parameter. HQVs were observed previously in mesoscopic samples of Sr2RuO4 in cantilever torque magnetometry measurements, thus providing direct evidence for spin-triplet pairing in the material. In addition, it raised important questions on HQV, including its stability and dynamics. These issues have remained largely unexplored, in particular, experimentally. We report in this paper the detection of HQVs in mesoscopic, doubly connected cylinders of single-crystalline Sr2RuO4 of a mesoscopic size and the examination of the effect of the in-plane magnetic field needed for the observation of the HQV by magnetoresistance (MR) oscillations measurements. Several distinct features found in our data, especially a dip and secondary peaks in the MR oscillations seen only in the presence of a sufficiently large in-plane magnetic field as well as a large measurement current, are linked to the formation of the HQV fluxoid state in and crossing of an Abrikosov HQV through the sample. The conclusion is drawn from the analysis of our data using a model of thermally activated vortex crossing overcoming a free-energy barrier which is modulated by the applied magnetic flux enclosed in the cylinder as well as the measurement current. Evidence for the trapping of an HQV fluxoid state in the sample was also found. Our observation of the HQV in mesoscopic Sr2RuO4 provided not only additional evidence for spin-triplet superconductivity in Sr2RuO4 but also insights into the physics of HQV, including its spontaneous spin polarization, stability, and dynamics. Our study also revealed a possible effect of the measurement current on the magnitude of the spontaneous spin polarization associated with the HQV.
Numerical calculations on a mesoscopic ring of a type II superconductor in the London limit suggest that an Abrikosov vortex can be trapped in such a structure above a critical magnetic field and generate a phase shift in the magnetoresistance oscill
Vortex structures in mesoscopic cylinder placed in external magnetic field are studied under the general de Gennes boundary condition for the order parameter corresponding to the suppression of surface superconductivity. The Ginzburg-Landau equations
Using time-dependent Ginzburg-Landau theory we demonstrate that the Aharonov-Bohm (AB) effect, resulting from a Berry phase shift of the (macroscopic) wavefunction, is revealed through the dynamics of topological phase defects present in that same wa
Odd-parity, spin-triplet superconductor Sr2RuO4 has been found to feature exotic vortex physics including half-flux quanta trapped in a doubly connected sample and the formation of vortex lattices at low fields. The consequences of these vortex state
The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occu