ﻻ يوجد ملخص باللغة العربية
We present the study of gas phases around cosmic-web filaments detected in the TNG300-1 hydro-dynamical simulation at redshift z=0. We separate the gas in five different phases according to temperature and density. We show that filaments are essentially dominated by gas in the warm-hot intergalactic medium (WHIM), which accounts for more than 80% of the baryon budget at $r sim 1$ Mpc. Apart from WHIM gas, cores of filaments ($r<1$ Mpc) also host large contributions other hotter and denser gas phases, whose fractions depend on the filament population. By building temperature and pressure profiles, we find that gas in filaments is isothermal up to $r sim 1.5$ Mpc, with average temperatures of T_core = $4-13 times 10^5$ K, depending on the large scale environment. Pressure at cores of filaments is on average P_core = $4-12 times 10^{-7}$ keV/cm^3, which is ~1000 times lower than pressure measured in observed clusters. We also estimate that the observed Sunyaev-Zeldovich (SZ) signal from cores of filaments should range between $0.5 < y < 4.1 times 10^{-8}$, and these results are compared with recent observations. Our findings show that the state of the gas in filaments depend on the presence of haloes, and on the large scale environment.
We present a comprehensive study of the distribution of matter around different populations of filaments, using the IllustrisTNG simulation at z=0. We compute the dark matter (DM), gas, and stellar radial density profiles of filaments, and we charact
A large portion of the baryons at low redshifts are still missing from detection. Most of the missing baryons are believed to reside in large scale cosmic filaments. Understanding the distribution of baryons in filaments is crucial for the search for
We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated $5000$ haloes in the mass ra
We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system
We investigate the alignment of galaxies and haloes relative to cosmic web filaments using the EAGLE hydrodynamical simulation. We identify filaments by applying the NEXUS+ method to the mass distribution and the Bisous formalism to the galaxy distri