ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Dark Matter in Galaxies: The Mass Fraction Within 5 Effective Radii

85   0   0.0 ( 0 )
 نشر من قبل William Harris
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large galaxies may contain an atmosphere of hot interstellar X-ray gas, and the temperature and radial density profile of this gas can be used to measure the total mass of the galaxy contained within a given radius r. We use this technique for 102 early-type galaxies (ETGs) with stellar masses M_* > 10^10 M_Sun, to evaluate the mass fraction of dark matter (DM) within the fiducial radius r = 5 r_e, denoted f_5 = f_{DM}(5r_e). On average, these systems have a median f_5 = 0.8 - 0.9 with a typical galaxy-to-galaxy scatter +-0.15. Comparisons with mass estimates made through the alternative techniques of satellite dynamics (e.g. velocity distributions of globular clusters, planetary nebulae, satellite dwarfs) as well as strong lensing show encouraging consistency over the same range of stellar mass. We find that many of the disk galaxies (S0/SA0/SB0) have a significantly higher mean $f_5$ than do the pure ellipticals, by Delta f_5 = 0.1. We suggest that this higher level may be a consequence of sparse stellar haloes and quieter histories with fewer major episodes of feedback or mergers. Comparisons are made with the Magneticum Pathfinder suite of simulations for both normal and centrally dominant Brightest Cluster galaxies. Though the observed data exhibit somewhat larger scatter at a given galaxy mass than do the simulations, the mean level of DM mass fraction for all classes of galaxies is in good first-order agreement with the simulations. Lastly, we find that the group galaxies with stellar masses near M_* ~ 10^11 M_Sun have relatively more outliers at low $f_5$ than in other mass ranges, possibly the result of especially effective AGN feedback in that mass range leading to expansion of their dark matter halos.



قيم البحث

اقرأ أيضاً

116 - Mark R. Lovell 2018
We use the IllustrisTNG (TNG) cosmological simulations to provide theoretical expectations for the dark matter mass fractions (DMFs) and circular velocity profiles of galaxies. TNG predicts flat circular velocity curves for $z = 0$ Milky Way (MW)-lik e galaxies beyond a few kpc from the galaxy centre, in better agreement with observational constraints than its predecessor, Illustris. TNG also predicts an enhancement of the dark matter mass within the 3D stellar half-mass radius ($r_mathrm{half}$; $M_mathrm{200c} = 10^{10}-10^{13}mathrm{M}_{odot}$, $z le2$) compared to its dark matter only and Illustris counterparts. This enhancement leads TNG present-day galaxies to be dominated by dark matter within their inner regions, with $f_mathrm{DM}(<r_mathrm{half})gtrsim0.5$ at all masses and with a minimum for MW-mass galaxies. The 1$sigma$ scatter is $lesssim$ 10~per~cent at all apertures, which is smaller than that inferred by some observational datasets, e.g. 40 per cent from the SLUGGS survey. TNG agrees with the majority of the observationally inferred values for elliptical galaxies once a consistent IMF is adopted (Chabrier) and the DMFs are measured within the same apertures. The DMFs measured within $r_mathrm{half}$ increase towards lower redshifts: this evolution is dominated by the increase in galaxy size with time. At $zsim2$, the DMF in disc-like TNG galaxies decreases with increasing galaxy mass, with $f_mathrm{DM}(<r_mathrm{half}) sim 0.10-0.65$ for $10^{10} lesssim M_{rm stars}/mathrm{M}_{odot} lesssim 10^{12}$, and are two times higher than if TNG galaxies resided in Navarro-Frenk-White dark matter haloes unaffected by baryonic physics. It remains to be properly assessed whether recent observational estimates of the DMFs at $zsim2$ rule out the contraction of the dark matter haloes predicted by the TNG model.
We study mass distributions within and beyond 5~effective radii ($R_{rm e}$) in 23 early-type galaxies from the SLUGGS survey, using their globular cluster (GC) kinematic data. The data are obtained with Keck/DEIMOS spectrograph, and consist of line- of-sight velocities for ~$3500$ GCs, measured with a high precision of ~15 $rm km s^{-1}$ per GC and extending out to $~13 R_{rm e}$. We obtain the mass distribution in each galaxy using the tracer mass estimator of Watkins et al. and account for kinematic substructures, rotation of the GC systems and galaxy flattening in our mass estimates. The observed scatter between our mass estimates and results from the literature is less than 0.2 dex. The dark matter fraction within $5R_{rm e}$ ($f_{rm DM}$) increases from ~$0.6$ to ~$0.8$ for low- and high-mass galaxies, respectively, with some intermediate-mass galaxies ($M_*{sim}10^{11}M_odot$) having low $f_{rm DM}sim0.3$, which appears at odds with predictions from simple galaxy models. We show that these results are independent of the adopted orbital anisotropy, stellar mass-to-light ratio, and the assumed slope of the gravitational potential. However, the low $f_{rm DM}$ in the ~$10^{11}M_odot$ galaxies agrees with the cosmological simulations of Wu et al. where the pristine dark matter distribution has been modified by baryons during the galaxy assembly process. We find hints that these $M_*sim10^{11}M_odot$ galaxies with low $f_{rm DM}$ have very diffuse dark matter haloes, implying that they assembled late. Beyond $5R_{rm e}$, the $M/L$ gradients are steeper in the more massive galaxies and shallower in both low and intermediate mass galaxies.
We present a observational study of the dark matter fraction in 225 rotation supported star-forming galaxies at $zapprox 0.9$ having stellar mass range: $ 9.0 leq log(M_* mathrm{M_odot}) leq 11.0$ and star formation rate: $0.49 leq log left(SFR mat hrm{[M_{odot} yr^{-1}]} right) leq 1.77$. This is a sub sample of KMOS redshift one spectroscopic survey (KROSS) previously studied by citet{GS20}. The stellar masses ($M_*$) of these objects were previously estimated using mass-to-light ratios derived from fitting the spectral energy distribution of the galaxies. Star formation rates were derived from the H$_alpha$ luminosities. The total gas masses ($M_{gas}$) are determined by scaling relations of molecular and atomic gas citep[][respectively] {Tacconi2018, Lagos2011}. The dynamical masses ($M_{dyn}$) are directly derived from the rotation curves (RCs) at different scale lengths (effective radius: $R_e$, $sim 2 R_e$ and $sim 3 R_e$) and then the dark matter fractions ($f_{ DM }=1-M_{bar}/M_{dyn}$) at these radii are calculated. We report that at $zsim 1$ only a small fraction ($sim 5%$) of our sample has a low ($< 20%$) DM fraction within $sim$ 2-3 $R_e$. The majority ($> 72%$) of SFGs in our sample have dark matter dominated outer disks ($sim 5-10$ kpc) in agreement with local SFGs. Moreover, we find a large scatter in the fraction of dark matter at a given stellar mass (or circular velocity) with respect to local SFGs, suggesting that galaxies at $z sim 1$, a) span a wide range of stages in the formation of stellar disks, b) have diverse DM halo properties coupled with baryons.
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars from microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian est imate for the fraction of the surface mass density in the form of stars is $alpha=0.21pm0.14$ near the Einstein radius of the lenses ($sim 1 - 2$ effective radii). The estimate for the average accretion disk size is $R_{1/2}=7.9^{+3.8}_{-2.6}sqrt{M/0.3M_sun}$ light days. The fraction of mass in stars at these radii is significantly larger than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.
We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to sim ultaneously fit stellar kinematics within the effective radius $R_{rm e}$, planetary nebula (PN) radial velocities out to $3, R_{rm e}$, and globular cluster (GC) radial velocities and colours out to $6,R_{rm e}$. The best-fitting model is a cored DM halo which contributes $sim 10%$ of the total mass within $1,R_{rm e}$, and $67% pm 10%$ within $6,R_{rm e}$, although a cusped DM halo is also acceptable. The red GCs exhibit mild rotation with $v_{rm max}/sigma_0 sim 0.3$ in the region $R > ,R_{rm e}$, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy -- similar to the PNe in this region -- has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا