ﻻ يوجد ملخص باللغة العربية
As further progress in the accurate and efficient computation of coupled partial differential equations (PDEs) becomes increasingly difficult, it has become highly desired to develop new methods for such computation. In deviation from conventional approaches, this short communication paper explores a computational paradigm that couples numerical solutions of PDEs via machine-learning (ML) based methods, together with a preliminary study on the paradigm. Particularly, it solves PDEs in subdomains as in a conventional approach but develops and trains artificial neural networks (ANN) to couple the PDEs solutions at their interfaces, leading to solutions to the PDEs in the whole domains. The concepts and algorithms for the ML coupling are discussed using coupled Poisson equations and coupled advection-diffusion equations. Preliminary numerical examples illustrate the feasibility and performance of the ML coupling. Although preliminary, the results of this exploratory study indicate that the ML paradigm is promising and deserves further research.
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name
The least squares method with deep neural networks as function parametrization has been applied to solve certain high-dimensional partial differential equations (PDEs) successfully; however, its convergence is slow and might not be guaranteed even wi
In recent years, sparse spectral methods for solving partial differential equations have been derived using hierarchies of classical orthogonal polynomials on intervals, disks, disk-slices and triangles. In this work we extend the methodology to a hi
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence an