ﻻ يوجد ملخص باللغة العربية
The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems, including photonic and magnonic systems, that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrid systems is the fundamentally weak coupling parameter between the elemental particles. This restriction impedes the entire field of hybrid magnonics by making realization of scalable on-chip hybrid magnonic systems unattainable. In this work, we propose a general flexible approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered micro-structures containing superconducting, insulating and ferromagnetic layers with modified both photon phase velocities and magnon eigen-frequencies. Phenomenologically, the enhanced coupling strength is provided by the radically reduced photon mode volume. The microscopic mechanism of the phonon-to-magnon coupling in studied systems evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers. This coherence is manifested by coherent superconducting screening of microwave fields by the superconductor/ferromagnet/superconductor three-layers in presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies.
In this work, the ultra-strong photon-to-magnon coupling is demonstrated for on-chip multilayered superconductor/ferromagnet/insulator hybrid thin film structures reaching the coupling strength above 6 GHz, the coupling ratio about 0.6, the single-sp
We analyze the influence of the surface passivation produced by oxides on the superconducting properties of $gamma$-Mo$_2$N ultra-thin films. The superconducting critical temperature of thin films grown directly on Si (100) with those using a buffer
Achieving quantum-level control over electromagnetic waves, magnetisation dynamics, vibrations and heat is invaluable for many practical application and possible by exploiting the strong radiation-matter coupling. Most of the modern strong microwave
We experimentally study the magnon-photon coupling in a system consitsing of the compensating ferrimagnet gadolinium iron garnet (GdIG) and a three-dimensional microwave cavity. The temperature is varied in order to tune the GdIG magnetization and to
We present a generic theoretical framework to describe non-reciprocal microwave circulation in a multimode cavity magnonic system and assess the optimal performance of practical circulator devices. We show that high isolation (> 56 dB), extremely low