ﻻ يوجد ملخص باللغة العربية
Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled data that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.
The notion of in-domain data in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging
To obtain high-quality sentence embeddings from pretrained language models (PLMs), they must either be augmented with additional pretraining objectives or finetuned on a large set of labeled text pairs. While the latter approach typically outperforms
Pretrained language models have shown success in many natural language processing tasks. Many works explore incorporating knowledge into language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge
Large-scale language models (LMs) pretrained on massive corpora of text, such as GPT-2, are powerful open-domain text generators. However, as our systematic examination reveals, it is still challenging for such models to generate coherent long passag
As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this