ﻻ يوجد ملخص باللغة العربية
Using density functional theory, we study the lattice dynamical properties of magnetite (Fe$_3$O$_4$) in the high-temperature cubic and low-temperature monoclinic phases. The calculated phonon dispersion curves and phonon density of states are compared with the available experimental data obtained by inelastic neutron, inelastic x-ray, and nuclear inelastic scattering. We find a very good agreement between the theoretical and experimental results for the monoclinic $Cc$ structure revealing the strong coupling between charge-orbital (trimeron) order and specific phonon modes. For the cubic phase, clear discrepancies arise which, remarkably, can be understood assuming that the strong trimeron-phonon coupling can be extended above the Verwey transition, with lattice dynamics influenced by the short-range trimeron order instead of the average cubic structure. Our results establish the validity of trimerons (and trimeron-phonon coupling) in explaining the physics of magnetite much beyond their original formulation.
We present the results of inelastic x-ray scattering for magnetite and analyze the energies and spectral widths of the phonon modes with different symmetries in a broad range of temperature 125<T<293 K. The phonon modes with X_4 and Delta_5 symmetrie
The Verwey transition in magnetite (Fe$_3$O$_4$) is the first metal-insulator transition ever observed and involves a concomitant structural rearrangement and charge-orbital ordering. Due to the complex interplay of these intertwined degrees of freed
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab
We report high-resolution inelastic x-ray measurements of the soft phonon mode in the charge-density-wave compound TiSe$_2$. We observe a complete softening of a transverse optic phonon at the L point, i.e. q = (0.5, 0, 0.5), at T ~ T_{CDW}. Renormal
We utilize near-infrared femtosecond pulses to investigate coherent phonon oscillations of Ca2RuO4. The coherent Ag phonon mode of the lowest frequency changes abruptly not only its amplitude but also the oscillation-phase as the spin order develops.