ترغب بنشر مسار تعليمي؟ اضغط هنا

Blob formation and ejection from the radiative inefficient accretion flow around massive black hole

114   0   0.0 ( 0 )
 نشر من قبل TianLe Zhao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tian-Le Zhao -




اسأل ChatGPT حول البحث

We study the small scale magnetic reconnection above the radiative inefficient accretion flow around massive black hole via 2D magnetohydrodynamics (MHD) numerical simulation, in order to model the blob formation and ejection from the accretion flow around Sgr A*. The connection of both the newly emerging magnetic field and the pre-existing magnetic field is investigated to check whether blobs could be driven in the environment of black hole accretion disc. After the magnetic connection, both the velocity and temperature of the plasma can be comparable to the inferred physical properties at the base of the observed blob ejection. For illustration, three small boxes which are located within 40 Schwarzschild radii from the central black hole are chosen as our simulation areas. At the beginning of the reconnections, the fluid is pulled toward the central black hole due to the gravitational attraction and the current sheet produced by the reconnection is also pulled toward the same direction, consequently, the resulting outflows move both upwards and towards the symmetry axis of the central black hole. Eventually, huge blobs appear, which supports the catastrophe model of episodic jets citep{2009MNRAS.395.2183Y}. It is also found that the closer to the black hole the magnetic connection happens, the higher the converting efficiency of the magnetic energy into the heat and kinetic energy. For these inner blobs, they have vortex structure due to the K-H instability, which happens along the current sheet separating the fluids with different speed.

قيم البحث

اقرأ أيضاً

We study low-density axisymmetric accretion flows onto black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the $alpha$-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disk w ithin the Bondi radius ($R_{rm B}$), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution at $rsim R_{rm B}$, where the density follows $rho propto (1+R_{rm B}/r)^{3/2}$, surrounding a geometrically thick and optically thin accretion disk at the centrifugal radius, where thermal energy generated by viscosity is transported via strong convection. Physical properties of the inner solution agree with those expected in convection-dominated accretion flows (CDAF; $rho propto r^{-1/2}$). In the inner CDAF solution, the gas inflow rate decreases towards the center due to convection ($dot{M}propto r$), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate $dot{M}_{rm B}$ The net accretion rate depends on the viscous strength, following $dot{M}/dot{M}_{rm B}propto (alpha/0.01)^{0.6}$. This solution holds for low accretion rates of $dot{M}_{rm B}/dot{M}_{rm Edd}< 10^{-3}$ having minimal radiation cooling, where $dot{M}_{rm Edd}$ is the Eddington rate. In a hot plasma at the bottom ($r<10^{-3}~R_{rm B}$), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be $dot{M}/dot{M}_{rm B} sim 10^{-3}-10^{-2}$. This rate is as low as $dot{M}/dot{M}_{rm Edd} sim 10^{-7}-10^{-6}$ inferred for SgrA$^*$ and the nuclear BHs in M31 and M87, and can explain the low luminosities in these sources, without invoking any feedback mechanism.
In this paper, we present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spe ctral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disk as the emitter of UV photons and a spherical central object as a source of X-ray emission. In the present analysis, the UV emission from the accretion disk is assumed to have an angular dependence, while the X-ray/central object radiation is assumed to be isotropic. This allows us to build streamlines in any angular direction we need to. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition resembles from pure type 1 & 2 to type 5 solutions (see Fig2.1 of Frank etal. 2002), which takes place regardless of whether or not the UV emission dominates over the X-ray emission. We compute the radiative factors at which this transition occurs, and discard type 5 solution from all our models. Estimated values of the accretion radius and accretion rate in terms of the classical Bondi values are also given. The results are useful for the construction of proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBH at the centre of galaxies.
We present magnetohydrodynamic simulations of a resistive accretion disk continuously launching transmagnetosonic, collimated jets. We time-evolve the full set of magnetohydrodynamic equations, but neglect radiative losses in the energetics (radiativ ely inefficient). Our calculations demonstrate that a jet is self-consistently produced by the interaction of an accretion disk with an open, initially bent large-scale magnetic field. A constant fraction of heated disk material is launched in the inner equipartition disk regions, leading to the formation of a hot corona and a bright collimated, super-fastmagnetosonic jet. We illustrate the complete dynamics of the ``hot near steady-state outflow (where thermal pressure $simeq$ magnetic pressure) by showing force balance, energy budget and current circuits. The evolution to this near stationary state is analyzed in terms of the temporal variation of energy fluxes controlling the energetics of the accretion disk. We find that unlike advection-dominated accretion flow, the energy released by accretion is mainly sent into the jet rather than transformed into disk enthalpy. These magnetized, radiatively inefficient accretion-ejection structures can account for under-luminous thin disks supporting bright fast collimated jets as seen in many systems displaying jets (for instance M87).
We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free parameter, but is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Different MHD solutions were generated for different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We generated two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. The cold MHD solutions are found to be inadequate to account for winds due to their low ejection efficiency. The warm solutions can have sufficiently high values of $p (gtrsim 0.1)$ which is required to explain the observed physical quantities in the wind. The heating (required at the disk surface for the warm solutions) could be due to the illumination which would be more efficient in the Soft state. We found that in the Hard state a range of ionisation parameter is thermodynamically unstable, which makes it impossible to have any wind at all, in the Hard state. Our results would suggest that a thermo-magnetic process is required to explain winds in BHBs.
We explore the MRI driven dynamo in a radiatively inefficient accretion flow (RIAF) using the mean field dynamo paradigm. Using singular value decomposition (SVD) we obtain the least squares fitting dynamo coefficients $alpha$ and $gamma$ by comparin g the time series of the turbulent electromotive force and the mean magnetic field. Our study is the first one to show the poloidal distribution of these dynamo coefficients in global accretion flow simulations. Surprisingly, we obtain a high value of the turbulent pumping coefficient $gamma$ which transports the mean magnetic flux radially outward. This would have implications for the launching of magnetised jets which are produced efficiently in presence a large-scale poloidal magnetic field close to the compact object. We present a scenario of a truncated disc beyond the RIAF where a large scale dynamo-generated poloidal magnetic field can aid jet-launching close to the black hole. Magnitude of all the calculated coefficients decreases with radius. Meridional variations of $alpha_{phi phi}$, responsible for toroidal to poloidal field conversion, is very similar to that found in shearing box simulations using the `test field (TF) method. By estimating the relative importance of $alpha$-effect and shear, we conclude that the MRI driven large-scale dynamo, which operates at high latitudes beyond a disc scale height, is essentially of the $alpha-Omega$ type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا