ترغب بنشر مسار تعليمي؟ اضغط هنا

Image Inversion and Uncertainty Quantification for Constitutive Laws of Pattern Formation

221   0   0.0 ( 0 )
 نشر من قبل Hongbo Zhao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The forward problems of pattern formation have been greatly empowered by extensive theoretical studies and simulations, however, the inverse problem is less well understood. It remains unclear how accurately one can use images of pattern formation to learn the functional forms of the nonlinear and nonlocal constitutive relations in the governing equation. We use PDE-constrained optimization to infer the governing dynamics and constitutive relations and use Bayesian inference and linearization to quantify their uncertainties in different systems, operating conditions, and imaging conditions. We discuss the conditions to reduce the uncertainty of the inferred functions and the correlation between them, such as state-dependent free energy and reaction kinetics (or diffusivity). We present the inversion algorithm and illustrate its robustness and uncertainties under limited spatiotemporal resolution, unknown boundary conditions, blurry initial conditions, and other non-ideal situations. Under certain situations, prior physical knowledge can be included to constrain the result. Phase-field, reaction-diffusion, and phase-field-crystal models are used as model systems. The approach developed here can find applications in inferring unknown physical properties of complex pattern-forming systems and in guiding their experimental design.



قيم البحث

اقرأ أيضاً

We present a simple and robust strategy for the selection of sampling points in Uncertainty Quantification. The goal is to achieve the fastest possible convergence in the cumulative distribution function of a stochastic output of interest. We assume that the output of interest is the outcome of a computationally expensive nonlinear mapping of an input random variable, whose probability density function is known. We use a radial function basis to construct an accurate interpolant of the mapping. This strategy enables adding new sampling points one at a time, adaptively. This takes into full account the previous evaluations of the target nonlinear function. We present comparisons with a stochastic collocation method based on the Clenshaw-Curtis quadrature rule, and with an adaptive method based on hierarchical surplus, showing that the new method often results in a large computational saving.
The macroscopic behavior of many materials is complex and the end result of mechanisms that operate across a broad range of disparate scales. An imperfect knowledge of material behavior across scales is a source of epistemic uncertainty of the overal l material behavior. However, assessing this uncertainty is difficult due to the complex nature of material response and the prohibitive computational cost of integral calculations. In this paper, we exploit the multiscale and hierarchical nature of material response to develop an approach to quantify the overall uncertainty of material response without the need for integral calculations. Specifically, we bound the uncertainty at each scale and then combine the partial uncertainties in a way that provides a bound on the overall or integral uncertainty. The bound provides a conservative estimate on the uncertainty. Importantly, this approach does not require integral calculations that are prohibitively expensive. We demonstrate the framework on the problem of ballistic impact of a polycrystalline magnesium plate. Magnesium and its alloys are of current interest as promising light-weight structural and protective materials. Finally, we remark that the approach can also be used to study the sensitivity of the overall response to particular mechanisms at lower scales in a materials-by-design approach.
Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more propert ies. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular dynamics engines against multiple objectives using genetic-algorithm-based global optimization methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD engines.
143 - M. Batic , M. Begalli , M. Han 2012
Ongoing investigations for the improvement of Geant4 accuracy and computational performance resulting by refactoring and reengineering parts of the code are discussed. Issues in refactoring that are specific to the domain of physics simulation are id entified and their impact is elucidated. Preliminary quantitative results are reported.
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description of the evolution of waves. The model is analyzed using random sampling techniques and non-intrusive methods based on generalized Polynomial Chaos (PC). These methods allow to accurately and efficiently estimate the probability distribution of the solution and require only the computation of the solution in different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained by the variability in the model input. We finally present a synthetic experiment studying the variance based sensitivity of the wave load on an off-shore structure to a number of input uncertainties. In the numerical examples presented the PC methods have exhibited fast convergence, suggesting that the problem is amenable to being analyzed with such methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا