ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative and chiral corrections to elastic lepton-proton scattering in chiral perturbation theory

108   0   0.0 ( 0 )
 نشر من قبل Vanamali Shastry C
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A unified treatment of both chiral and radiative corrections to the low-energy elastic lepton-proton scattering processes is presented in Heavy Baryon Chiral Perturbations Theory. The proton hadronic chiral corrections include the next-to-next-to leading order corrections whereas the radiative corrections include the next-to-leading order terms in our novel power counting scheme. We find that the net fractional well-defined chiral corrections with respect to the leading order Born cross section can be as large as $10%$ ($20%$) for electron (muon) scattering process for MUon proton Scattering Experiment (MUSE) kinematics. We show {it via} our model-independent treatment of the low-energy lepton-proton kinematics, that the largest theoretical uncertainty is due to the recent different published values of the protons rms radius while, e.g., the next higher order hadronic chiral terms are expected to give rather nominal errors. For the radiative corrections we demonstrate a systematic order by order cancellation of all infrared singularities and present our finite ultraviolet regularization results. We find that the radiative corrections for muon-proton scattering is of the order of $2%$, whereas for electron scattering the radiative corrections could be as large as $25%$. We attribute such a contrasting result partially to the fact that in muon scattering the leading radiative order correction goes through zero in some intermediate low-momentum transfer region, leaving the sub-leading radiative chiral order effects to play a dominant role in this particular kinematic region. For the low-energy MUSE experiment, the often neglected lepton mass as well as the Pauli form factor contributions of the relativistic leptons are incorporated in all our computations.

قيم البحث

اقرأ أيضاً

We use heavy baryon chiral perturbation theory to evaluate the two-photon exchange corrections to the low-energy elastic lepton-proton scattering at next-to-leading order accuracy, i.e., ${mathcal O}(alpha, M^{-1})$, including a non-zero lepton mass. We consider the elastic proton intermediate state in the two-photon exchange together in the soft photon approximation. The infrared singular contributions are projected out using dimensional regularization. The resulting infrared singularity-free two-photon exchange contribution is in good numerical agreement with existing predictions based on standard diagrammatic soft photon approximation evaluations.
The inverse $beta$-decay reaction, $ bar{ u}_e p to e^+ n$, for low-energy anti-neutrinos coming from nuclear reactors is of great current interest in connection with high-precision measurements of the neutrino mixing angle $theta_{13}$. We have deri ved analytic expressions, up to next-to-leading order in heavy-baryon chiral perturbation theory, for the radiative corrections (RCs) and the nucleon-recoil corrections both for this reaction and for the related neutron $beta$-decay process. We show that the recoil corrections, which include the weak magnetism contribution, are small for neutron $beta$-decay, but for inverse $beta$-decay, the recoil corrections are comparable in size to the RCs for typical energies of reactor anti-neutrinos, and they have opposite signs. The RCs and the recoil corrections exhibit very different dependences on the neutrino energy.
308 - X.-L. Ren , E. Epelbaum , 2019
We calculate the lambda-nucleon scattering phase shifts and mixing angles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Scattering amplitudes are obtained by s olving the corresponding coupled-channel integral equations that have a milder ultraviolet behavior compared to their non-relativistic analogs. This allows us to consider the removed cutoff limit in our leading-order calculations also in the $^3P_0$ and $^3P_1$ partial waves. We find that, in the framework we are using, at least some part of the higher-order contributions to the baryon-baryon potential in these channels needs to be treated nonperturbatively and demonstrate how this can be achieved in a way consistent with quantum field theoretical renormalization for the leading contact interactions. We compare our results with the ones of the non-relativistic approach and lattice QCD phase shifts obtained for non-physical pion masses.
119 - Thomas R. Hemmert 1996
We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinber gs power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.
We discuss two topics concerning the application of chiral perturbation theory to nuclear physics: (1) the latest developments in the study of possible kaon condensation in dense baryonic systems; (2) nuclear responses to electro-weak probes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا