ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving enhanced quantum sensing in partially accessible many-body systems

59   0   0.0 ( 0 )
 نشر من قبل Utkarsh Mishra
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ground state criticality of many-body systems is a resource for quantum enhanced sensing, namely Heisenberg precision limit, provided that one has access to the whole system. We show that for partial accessibility the sensing capacity of a block in the ground state reduces to sub-Heisenberg limit. To compensate for this, we drive the system periodically and use the local steady state for quantum sensing. Remarkably, the steady state sensing shows a significant enhancement in its precision in comparison with the ground state and even shows super-Heisenberg scaling for a certain range of frequencies. The origin of this precision enhancement is found to be the closing of the Floquet gap. This is in close correspondence with the role of the vanishing energy gap at criticality for quantum enhanced ground state sensing with global accessibility.



قيم البحث

اقرأ أيضاً

Quantum sensors have been shown to be superior to their classical counterparts in terms of resource efficiency. Such sensors have traditionally used the time evolution of special forms of initially entangled states, adaptive measurement basis change, or the ground state of many-body systems tuned to criticality. Here, we propose a different way of doing quantum sensing which exploits the dynamics of a many-body system, initialized in a product state, along with a sequence of projective measurements in a specific basis. The procedure has multiple practical advantages as it: (i) enables remote quantum sensing, protecting a sample from the potentially invasive readout apparatus; and (ii) simplifies initialization by avoiding complex entangled or critical ground states. From a fundamental perspective, it harnesses a resource so far unexploited for sensing, namely, the residual information from the unobserved part of the many-body system after the wave-function collapses accompanying the measurements. By increasing the number of measurement sequences, through the means of a Bayesian estimator, precision beyond the standard limit, approaching the Heisenberg bound, is shown to be achievable.
137 - V. A. Golovko 2015
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose condensation. In this case, a peculiar interplay of quantum effects and of very weak gravitational interaction between microparticles occurs. As a result, there can form spatially-bounded equilibrium structures macroscopic in size, both immobile and rotating. The size of a structure is inversely related to the number of particles in the structure. When the number of particles is relatively small the size can be enormous, whereas if this numbder equals Avogadros number the radius of the structure is about 30 cm in the case that the structure consists of hydrogen atoms. The rotating objects have the form of rings and exhibit superfluidity. An atmosphere that can be captured by tiny celestial bodies from the ambient medium is considered too. The thickness of the atmosphere decreases as its mass increases. If short-range intermolecular forces are taken into account, the results obtained hold for excited states whose lifetime can however be very long. The results of the paper can be utilized for explaining the first stage of formation of celestial bodies from interstellar and even intergalactic gases.
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s tate A or state B?. In quantum mechanics, the latter type of measurements can be studied and optimized using the framework of quantum hypothesis testing. In many cases one can explicitly find the optimal measurement in the limit where one has simultaneous access to a large number $n$ of identical copies of the system, and estimate the expected error as $n$ becomes large. Interestingly, error estimates turn out to involve various quantum information theoretic quantities such as relative entropy, thereby giving these quantities operational meaning. In this paper we consider the application of quantum hypothesis testing to quantum many-body systems and quantum field theory. We review some of the necessary background material, and study in some detail the situation where the two states one wants to distinguish are parametrically close. The relevant error estimates involve quantities such as the variance of relative entropy, for which we prove a new inequality. We explore the optimal measurement strategy for spin chains and two-dimensional conformal field theory, focusing on the task of distinguishing reduced density matrices of subsystems. The optimal strategy turns out to be somewhat cumbersome to implement in practice, and we discuss a possible alternative strategy and the corresponding errors.
Quantum sensing is inevitably an elegant example of supremacy of quantum technologies over their classical counterparts. One of the desired endeavor of quantum metrology is AC field sensing. Here, by means of analytical and numerical analysis, we sho w that integrable many-body systems can be exploited efficiently for detecting the amplitude of an AC field. Unlike the conventional strategies in using the ground states in critical many-body probes for parameter estimation, we only consider partial access to a subsystem. Due to the periodicity of the dynamics, any local block of the system saturates to a steady state which allows achieving sensing precision well beyond the classical limit, almost reaching the Heisenberg bound. We associate the enhanced quantum precision to closing of the Floquet gap, resembling the features of quantum sensing in the ground state of critical systems. We show that the proposed protocol can also be realized in near-term quantum simulators, e.g. ion-traps, with limited number of qubits. We show that in such systems a simple block magnetization measurement and a Bayesian inference estimator can achieve very high precision AC field sensing.
We analyze state preparation within a restricted space of local control parameters between adiabatically connected states of control Hamiltonians. We formulate a conjecture that the time integral of energy fluctuations over the protocol duration is b ounded from below by the geodesic length set by the quantum geometric tensor. The conjecture implies a geometric lower bound for the quantum speed limit (QSL). We prove the conjecture for arbitrary, sufficiently slow protocols using adiabatic perturbation theory and show that the bound is saturated by geodesic protocols, which keep the energy variance constant along the trajectory. Our conjecture implies that any optimal unit-fidelity protocol, even those that drive the system far from equilibrium, are fundamentally constrained by the quantum geometry of adiabatic evolution. When the control space includes all possible couplings, spanning the full Hilbert space, we recover the well-known Mandelstam-Tamm bound. However, using only accessible local controls to anneal in complex models such as glasses or to target individual excited states in quantum chaotic systems, the geometric bound for the quantum speed limit can be exponentially large in the system size due to a diverging geodesic length. We validate our conjecture both analytically by constructing counter-diabatic and fast-forward protocols for a three-level system, and numerically in nonintegrable spin chains and a nonlocal SYK model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا