ﻻ يوجد ملخص باللغة العربية
We fabricate an extremely thin optical fiber that supports a super-extended mode with a diameter as large as 13 times the optical wavelength, residing almost entirely outside the fiber and guided over thousands of wavelengths (5 mm), in order to couple guided light to warm atomic vapor. This unique configuration balances between strong confinement, as evident by saturation powers as low as tens of nW, and long interaction times with the thermal atoms, thereby enabling fast and coherent interactions. We demonstrate narrow coherent resonances (tens of MHz) of electromagnetically induced transparency for signals at the single-photon level and long relaxation times (10 ns) of atoms excited by the guided mode. The dimensions of the guided modes evanescent field are compatible with the Rydberg blockade mechanism, making this platform particularly suitable for observing quantum non-linear optics phenomena.
We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator str
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Rams
We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonan
Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined phot
Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 n