ترغب بنشر مسار تعليمي؟ اضغط هنا

Local self-interaction correction method with a simple scaling factor

133   0   0.0 ( 0 )
 نشر من قبل Yoh Yamamoto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recently proposed local self-interaction correction (LSIC) method [Zope textit{et al.} J. Chem. Phys., 2019,{bf 151}, 214108] when applied to the simplest local density approximation provides significant improvement over standard Perdew-Zunger SIC (PZSIC) for both equilibrium properties such as total or atomization energies as well as properties involving stretched bond such as barrier heights. The method uses an iso-orbital indicator to identify the single-electron regions. To demonstrate the LSIC method, Zope textit{et al.} used the ratio $z_sigma$ of von Weizsacker $tau_sigma^W$ and total kinetic energy densities $tau_sigma$, ($z_sigma = tau_sigma^W/tau_sigma$) as a scaling factor to scale the self-interaction correction. The present work further explores the LSIC method using a simpler scaling factor as a ratio of orbital and spin densities in place of the ratio of kinetic energy densities. We compute a wide array of both, equilibrium and non-equilibrium properties using the LSIC and orbital scaling methods using this simple scaling factor and compare them with previously reported results. Our study shows that the present results with simple scaling factor are comparable to those obtained by LSIC($z_sigma$) for most properties but have slightly larger errors. We furthermore study the binding energies of small water clusters using both the scaling factors. Our results show that LSIC with $z_{sigma}$ has limitation in predicting the binding energies of weakly bonded system due to the inability of $z_{sigma}$ to distinguish weakly bonded region from slowly varying density region. LSIC when used with density ratio as a scaling factor, on the other hand, provides good description of water cluster binding energies, thus highlighting the appropriate choice of iso-orbital indicator.

قيم البحث

اقرأ أيضاً

The Perdew-Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights o r dissociation energies but results in over-correcting the properties well described by SI-uncorrected semi-local functional. One cure to rectify the over-correcting tendency is to scale down the magnitude of SI-correction of each orbital in the many electron region. We have implemented the orbitalwise scaled down SI-correction (OSIC) scheme of Vydrov et al. [J. Chem. Phys. 124, 094108 (2006)] using the Fermi-Lowdin SI-correction method. After validating the OSIC implementation with previously reported OSIC-LSDA results, we examine its performance with the most successful non-empirical SCAN meta-GGA functional. Using different forms of scaling factors to identify one-electron regions, we assess the performance of OSIC-SCAN for a wide range of properties: total energies, ionization potentials and electron affinities for atoms, atomization energies, dissociation and reaction energies, and reaction barrier heights of molecules. Our results show that OSIC-SCAN provides superior results than the previously reported OSIC-LSDA, -PBE, and -TPSS results. Furthermore, we propose selective scaling of OSIC (SOSIC) to remove its major shortcoming that destroys the $-1/r$ asymptotic behavior of the potentials. The SOSIC method gives the highest occupied orbital eigenvalues practically identical to those in PZSIC and unlike OSIC provides bound atomic anions even with larger powers of scaling factors. SOSIC compared to PZSIC or OSIC provides more balanced description of total energies and barrier heights.
Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but cl osely-related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semi-local approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semi-local approximations satisfy, and suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities, and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGAs) and meta-GGAs, it reduces and often worsens the atomization energies of molecules. Thus PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here in particular to the SCAN meta-GGA, for which the correlation part is already self-interaction-free. That property makes SCAN a natural first candidate for a generalized SIC.
We study the importance of self-interaction errors in density functional approximations for various water-ion clusters. We have employed the Fermi-Lowdin orbital self-interaction correction (FLOSIC) method in conjunction with LSDA, PBE, and SCAN to d escribe binding energies of hydrogen-bonded water-ion clusters, textit{i.e.}, water-hydronium, water-hydroxide, water-halide, as well as non-hydrogen-bonded water-alkali clusters. In the hydrogen-bonded water-ion clusters, the building blocks are linked by hydrogen atoms, although the links are much stronger and longer-ranged than the normal hydrogen bonds between water molecules, because the monopole on the ion interacts with both permanent and induced dipoles on the water molecules. We find that self-interaction errors overbind the hydrogen-bonded water-ion clusters and that FLOSIC reduces the error and brings the binding energies into closer agreement with higher-level calculations. The non-hydrogen-bonded water-alkali clusters are not significantly affected by self-interaction errors. Self-interaction corrected PBE predicts the lowest mean unsigned error in binding energies ($leq$ 50 meV/ce{H2O}) for hydrogen-bonded water-ion clusters. Self-interaction errors are also largely dependent on the cluster size, and FLOSIC does not accurately capture the subtle variation in all clusters, indicating the need for further refinement.
(Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them com pared to quasi-particle calculations. The inaccuracy for the HO is attributed to SIE inherent in DFAs. We assessed the IE based on Perdew-Zunger self-interaction corrections on 14 small to moderate-sized organic molecules relevant in organic electronics and polymer donor materials. Though self-interaction corrected DFAs were found to significantly improve the IE relative to the uncorrected DFAs, they overestimate. However, when the self-interaction correction is interiorly scaled using a function of the iso-orbital indicator z{sigma}, only the regions where SIE is significant get a correction. We discuss these approaches and show how these methods significantly improve the description of the HO eigenvalue for the organic molecules.
The Perdew-Zunger self-interaction correction(PZ-SIC) improves the performance of density functional approximations(DFAs) for the properties that involve significant self-interaction error(SIE), as in stretched bond situations, but overcorrects for e quilibrium properties where SIE is insignificant. This overcorrection is often reduced by LSIC, local scaling of the PZ-SIC to the local spin density approximation(LSDA). Here we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of atomic number Z in the asymptotic expansion of the exchange-correlation(xc) energy for atoms. LSIC and LSIC+ are scaled by functions of the iso-orbital indicator z{sigma}, which distinguishes one-electron regions from many-electron regions. LSIC+ applied to LSDA works better for many equilibrium properties than LSDA-LSIC and the Perdew, Burke, and Ernzerhof(PBE) generalized gradient approximation(GGA), and almost as well as the strongly constrained and appropriately normed(SCAN) meta-GGA. LSDA-LSIC and LSDA-LSIC+, however, both fail to predict interaction energies involving weaker bonds, in sharp contrast to their earlier successes. It is found that more than one set of localized SIC orbitals can yield a nearly degenerate energetic description of the same multiple covalent bond, suggesting that a consistent chemical interpretation of the localized orbitals requires a new way to choose their Fermi orbital descriptors. To make a locally scaled-down SIC to functionals beyond LSDA requires a gauge transformation of the functionals energy density. The resulting SCAN-sdSIC, evaluated on SCAN-SIC total and localized orbital densities, leads to an acceptable description of many equilibrium properties including the dissociation energies of weak bonds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا