ﻻ يوجد ملخص باللغة العربية
The theory of derivators provides a convenient abstract setting for computing with homotopy limits and colimits. In enriched homotopy theory, the analogues of homotopy (co)limits are weighted homotopy (co)limits. In this thesis, we develop a theory of derivators and, more generally, prederivators enriched over a monoidal derivator E. In parallel to the unenriched case, these E-prederivators provide a framework for studying the constructions of enriched homotopy theory, in particular weighted homotopy (co)limits. As a precursor to E-(pre)derivators, we study E-categories, which are categories enriched over a bicategory Prof(E) associated to E. We prove a number of fundamental results about E-categories, which parallel classical results for enriched categories. In particular, we prove an E-category Yoneda lemma, and study representable maps of E-categories. In any E-category, we define notions of weighted homotopy limits and colimits. We define E-derivators to be E-categories with a number of further properties; in particular, they admit all weighted homotopy (co)limits. We show that the closed E-modules studied by Groth, Ponto and Shulman give rise to associated E-derivators, so that the theory of E-(pre)derivators captures these examples. However, by working in the more general context of E-prederivators, we can study weighted homotopy (co)limits in other settings, in particular in settings where not all weighted homotopy (co)limits exist. Using the E-category Yoneda lemma, we prove a representability theorem for E-prederivators. We show that we can use this result to deduce representability theorems for closed E-modules from representability results for their underlying categories.
We develop some aspects of the theory of derivators, pointed derivators, and stable derivators. As a main result, we show that the values of a stable derivator can be canonically endowed with the structure of a triangulated category. Moreover, the fu
Using the description of enriched $infty$-operads as associative algebras in symmetric sequences, we define algebras for enriched $infty$-operads as certain modules in symmetric sequences. For $mathbf{V}$ a nice symmetric monoidal model category, we
We prove a rectification theorem for enriched infinity-categories: If V is a nice monoidal model category, we show that the homotopy theory of infinity-categories enriched in V is equivalent to the familiar homotopy theory of categories strictly enri
In this paper we present background results in enriched category theory and enriched model category theory necessary for developing model categories of enriched functors suitable for doing functor calculus.
The invertibility hypothesis for a monoidal model category S asks that localizing an S-enriched category with respect to an equivalence results in an weakly equivalent enriched category. This is the most technical among the axioms for S to be an exce