ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme High-Field Superconductivity in Thin Re Films

98   0   0.0 ( 0 )
 نشر من قبل Gianluigi Catelani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the high-field superconducting properties of thin, disordered Re films via magneto-transport and tunneling density of states measurements. Films with thicknesses in the range of 9 nm to 3 nm had normal state sheet resistances of $sim$0.2 k$Omega$ to $sim$1 k$Omega$ and corresponding transition temperatures in the range of 6 K to 3 K. Tunneling spectra were consistent with those of a moderate coupling BCS superconductor. Notwithstanding these unremarkable superconducting properties, the films exhibited an extraordinarily high upper critical field. We estimate their zero-temperature $H_{c2}$ to be more than twice the Pauli limit. Indeed, in 6 nm samples the estimated reduced critical field $H_{c2}/T_csim$ 5.6 T/K is among the highest reported for any elemental superconductor. Although the sheet resistances of the films were well below the quantum resistance $R_Q=h/4e^2$, their $H_{c2}$s approached the theoretical upper limit of a strongly disordered superconductor for which $k_Fellsim1$.



قيم البحث

اقرأ أيضاً

We investigated the effect of alloying on the upper critical field $H_{c2}$ in 12 $MgB_2$ films, in which disorder was introduced by growth, carbon doping or He-ion irradiation, finding a significant $H_{c2}$ enhancement in C-alloyed films, and an an omalous upward curvature of $H_{c2}(T)$. Record high values of $H_{c2}^{perp}(4.2) simeq 35T$ and $H_{c2}|(4.2) simeq 51T$ were observed perpendicular and parallel to the ab plane, respectively. The temperature dependence of $H_{c2}(T)$ is described well by a theory of dirty two-gap superconductivity. Extrapolation of the experimental data to T=0 suggests that $H_{c2}|(0)$ approaches the paramagnetic limit of $sim 70T$.
Due to competing long range ferromagnetic order, the transition metals Fe, Co and Ni are not superconductors at ambient pressure. While superconductivity was observed in a non-magnetic phase of Fe, stabilized under pressure, it is yet to be discovere d in Co and Ni under any experimental conditions. Here, we report emergence of superconductivity in the recently discovered high-density nonmagnetic face centered cubic phase in Co thin films below a transition temperature (Tc) of ~5.4 K, as revealed in experiments based on point-contact spectroscopy and resistance, and four-probe measurements of resistance at ambient pressure. We confirm the non-magnetic nature of the dense fcc phase of Co within first-principles density functional theory, and show that its superconductivity below 5 K originates from anomalous softening of zone-boundary phonons and their enhanced coupling with electrons upon biaxial strain.
Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, on the other hand, is inherently antagonistic towards magnetic fields. Only in r are cases can these effects be mitigated over limited fields, leading to reentrant superconductivity. Here, we report the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2. Strikingly, we observe superconductivity in the highest magnetic field range identified for any reentrant superconductor, beyond 65 T. These extreme properties reflect a new kind of exotic superconductivity rooted in magnetic fluctuations and boosted by a quantum dimensional crossover.
All non-interacting two-dimensional electronic systems are expected to exhibit an insulating ground state. This conspicuous absence of the metallic phase has been challenged only in the case of low-disorder, low density, semiconducting systems where strong interactions dominate the electronic state. Unexpectedly, over the last two decades, there have been multiple reports on the observation of a state with metallic characteristics on a variety of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here we show that for two very different thin-film superconductors, amorphous indium-oxide and a single-crystal of 2H-NbSe2, this metallic state can be eliminated by filtering external radiation. Our results show that these superconducting films are extremely sensitive to external perturbations leading to the suppression of superconductivity and the appearance of temperature independent, metallic like, transport at low temperatures. We relate the extreme sensitivity to the theoretical observation that, in two-dimensions, superconductivity is only marginally stable.
145 - Y. Krockenberger 2007
The observation of superconductivity in the layered transition metal oxide NaxCoO2 y H2O (K. Takada et al., Nature 422, 53 (2003)) has caused a tremendous upsurge of scientific interest due to its similarities and its differences to the copper based high-temperature superconductors. Two years after the discovery, we report the fabrication of single-phase superconducting epitaxial thin films of Na0.3CoO2 x 1.3 D2O grown by pulsed laser deposition technique. This opens additional roads for experimental research exploring the superconducting state and the phase diagram of this unconventional material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا