ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating the Role of Renewable Energies in Integrated Energy-water Nexus Planning under Uncertainty Using Fuzzy Logic

62   0   0.0 ( 0 )
 نشر من قبل Afshin Ghassemi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy and water systems are highly interconnected. Energy is required to extract, transmit, and treat water and wastewater, and water is needed for cooling energy systems. There is a rapid increase in demand for energy and water due to factors such as population and economic growth. In less than 30 years, the need for energy and water will nearly double globally. As the energy and water resources are limited, it is critical to have a sustainable energy-water nexus framework to meet these growing demands. Renewable energies provide substantial opportunities in energy-water nexuses by boosting energy and water reliability and sustainability and can be less water-intensive than conventional technologies. These resources, such as wind and solar power, do not need water inputs. As a result, they can be used as a supplement to the energy-water nexus portfolio. In this paper, renewable energies in energy-water nexus have been investigated for a range of possible scenarios. As renewable energy resources are not deterministic, fuzzy logic is used to model the uncertainty. The results show that renewable energies can significantly improve the energy-water nexus planning; however, the power grid reliability on renewable energy should be aligned with the level of systems uncertainty. The gap between the decisions extracted from the Fuzzy model and the deterministic model amplifies the importance of considering uncertainty to generate reliable decisions. Keywords: Energy-water Nexus, Renewable Energies, Optimization under Uncertainty, Fuzzy Logic.



قيم البحث

اقرأ أيضاً

A system of a systems approach that analyzes energy and water systems simultaneously is called energy-water nexus. Neglecting the interrelationship between energy and water drives vulnerabilities whereby limits on one resource can cause constraints o n the other resource. Power plant energy production directly depends on water availability, and an outage of the power systems will affect the wastewater treatment facility processes. Therefore, it is essential to integrate energy and water planning models. As mathematical energy-water nexus problems are complex, involve many uncertain parameters, and are large-scale, we proposed a novel multi-stage adjustable Fuzzy robust approach that balances the solutions robustness against the budget-constraints. Scenario-based analysis indicates that the proposed approach generates flexible and robust decisions that avoid excessive costs compared to conservative methods. Keywords: Energy-water Nexus, Renewable Energy, Optimization under Uncertainty, Fuzzy logic, Robust Optimization
Reusable decoys offer a cost-effective alternative to the single-use hardware commonly applied to protect surface assets from threats. Such decoys portray fake assets to lure threats away from the true asset. To deceive a threat, a decoy first has to position itself such that it can break the radar lock. Considering multiple simultaneous threats, this paper introduces an approach for controlling multiple decoys to minimise the time required to break the locks of all the threats. The method includes the optimal allocation of one decoy to every threat with an assignment procedure that provides local position constraints to guarantee collision avoidance and thereby decouples the control of the decoys. A crude model of a decoy with uncertainty is considered for motion planning. The task of a decoy reaching a state in which the lock of the assigned threat can be broken is formulated as a temporal logic specification. To this end, the requirements to complete the task are modelled as time-varying set-membership constraints. The temporal and logical combination of the constraints is encoded in a mixed-integer optimisation problem. To demonstrate the results a simulated case study is provided.
In this article, we focus on the problem of mitigating the risk of not being able to meet the power demand, due to the inherent uncertainty of renewable energy generation sources in microgrids. We consider three different demand scenarios, namely mee ting short-time horizon power demand, a sustained energy demand and a scenario where the power demand at a prescribed future time has to be met with almost sure guarantee with power generation being stochastic and following dynamics governed by geometric Brownian motion. For each of these scenarios we provide solutions to meet the electrical demand. We present results of numerical experiments to demonstrate the applicability of our schemes.
The accurate representation of variable renewable generation (RES, e.g., wind, solar PV) assets in capacity expansion planning (CEP) studies is paramount to capture spatial and temporal correlations that may exist between sites and impact both power system design and operation. However, it typically has a high computational cost. This paper proposes a method to reduce the spatial dimension of CEP problems while preserving an accurate representation of renewable energy sources. A two-stage approach is proposed to this end. In the first stage, relevant sites are identified via a screening routine that discards the locations with little impact on system design. In the second stage, the subset of relevant RES sites previously identified is used in a CEP problem to determine the optimal configuration of the power system. The proposed method is tested on a realistic EU case study and its performance is benchmarked against a CEP set-up in which the entire set of candidate RES sites is available. The method shows great promise, with the screening stage consistently identifying 90% of the optimal RES sites while discarding up to 54% of the total number of candidate locations. This leads to a peak memory reduction of up to 41% and solver runtime gains between 31% and 46%, depending on the weather year considered.
117 - Yue Song , David J. Hill , Tao Liu 2021
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probabil ity of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا