ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fully General, Non-Perturbative Treatment of Impulsive Heating

48   0   0.0 ( 0 )
 نشر من قبل Uddipan Banik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Impulsive encounters between astrophysical objects are usually treated using the distant tide approximation (DTA) for which the impact parameter, $b$, is assumed to be significantly larger than the characteristic radii of the subject, $r_{mathrm{S}}$, and the perturber, $r_{mathrm{P}}$. The perturber potential is then expanded as a multipole series and truncated at the quadrupole term. When the perturber is more extended than the subject, this standard approach can be extended to the case where $r_{mathrm{S}} ll b < r_{mathrm{P}}$. However, for encounters with $b$ of order $r_{mathrm{S}}$ or smaller, the DTA typically overpredicts the impulse, $Delta mathbf{v}$, and hence the internal energy change of the subject, $Delta E_{mathrm{int}}$. This is unfortunate, as these close encounters are the most interesting, potentially leading to tidal capture, mass stripping, or tidal disruption. Another drawback of the DTA is that $Delta E_{mathrm{int}}$ is proportional to the moment of inertia, which diverges unless the subject is truncated or has a density profile that falls off faster than $r^{-5}$. To overcome these shortcomings, this paper presents a fully general, non-perturbative treatment of impulsive encounters which is valid for any impact parameter, and not hampered by divergence issues, thereby negating the necessity to truncate the subject. We present analytical expressions for $Delta mathbf{v}$ for a variety of perturber profiles, apply our formalism to both straight-path encounters and eccentric orbits, and discuss the mass loss due to tidal shocks in gravitational encounters between equal mass galaxies.

قيم البحث

اقرأ أيضاً

The solar corona consists of a million-degree Kelvin plasma. A complete understanding of this phenomenon demands the study of Quiet Sun (QS) regions. In this work, we study QS regions in the 171 {AA}, 193 {AA} and 211 {AA} passbands of the Atmospheri c Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), by combining the empirical impulsive heating forward model of Pauluhn & Solanki (2007) with a machine-learning inversion model that allows uncertainty quantification. We find that there are {approx} 2--3 impulsive events per min, with a lifetime of about 10--20 min. Moreover, for all the three passbands, the distribution of power law slope {alpha} peaks above 2. Our exploration of correlations among the frequency of impulsive events and their timescales and peak energy suggests that conduction losses dominate over radiative cooling losses. All these finding suggest that impulsive heating is a viable heating mechanism in QS corona.
271 - Durgesh Tripathi 2010
Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained Emission Measure EM$(T)$ distributions in two different moss regions within the same active region. We have compared these with th eoretical transition region EMs derived for three limiting cases, namely textit{static equilibrium}, textit{strong condensation} and textit{strong evaporation} from cite{ebtel}. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from $log T[mathrm{K}]=5.15 -6.3$. Using photospheric abundances we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the textit{strong condensation} case (EM$_{con}$), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3{-}5 MK) seen in the core of active regions are heated by nanoflares.
It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have shown that in the solar corona low-FIP elements, such as Fe, Si, Mg, and Ca, are generally enriched relative to high-FIP elements, such as C, N, O, Ar, and Ne. In this paper we report on measurements of plasma composition made during impulsive heating events observed at transition region temperatures with the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these events the intensities of O IV, V, and VI emission lines are enhanced relative to emission lines from Mg V, VI, and VII and Si VI and VII and indicate a composition close to that of the photosphere. Long-lived coronal fan structures, in contrast, show an enrichment of low-FIP elements. We conjecture that the plasma composition is an important signature of the coronal heating process, with impulsive heating leading to the evaporation of unfractionated material from the lower layers of the solar atmosphere and higher frequency heating leading to long-lived structures and the accumulation of low-FIP elements in the corona.
44 - K. G. Gayley 2014
In collisional ionization equilibrium (CIE), the X-ray spectrum from a plasma depends on the distribution of emission measure over temperature (DEM). Due to the well-known ill conditioning problem, no precisely resolved DEM can be inverted directly f rom the spectrum, so often only a gross parametrization of the DEM is used to approximate the data, in hopes that the parametrization can provide useful model-independent constraints on the heating process. However, ill conditioning also introduces ambiguity into the various different parametrizations that could approximate the data, which may spoil the perceived advantages of model independence. Thus, this paper instead suggests a single parametrization for both the heating mechanism and the X-ray sources, based on a model of impulsive heating followed by complete cooling. This approach is similar to a ``cooling flow approach, but allows injection at multiple initial temperatures, and applies even when the steady state is distribution of different shock strengths, as for a standing shock with a range of obliquities, or for embedded stochastic shocks that are only steady in a statistical sense. This produces an alternative parametrization for X-ray spectra that is especially streamlined for higher density plasmas with efficient radiative cooling, and provides internal consistency checks on the assumption of impulsive heating followed by complete cooling. The result is no longer model independent, but the results are more directly interpretable in terms of useful physical constraints on the impulsive heating distribution.
We develop a first-principles approach for the treatment of vibronic interactions in solids that overcomes the main limitations of state-of-the-art electron-phonon coupling formalisms. In particular, anharmonic effects in the nuclear dynamics are acc ounted to all orders via ab initio molecular dynamics simulations. This non-perturbative, self-consistent approach evaluates the response of the wave functions along the computed anharmonic trajectory; thus it fully considers the coupling between nuclear and electronic degrees of freedom. We validate and demonstrate the merits of the concept by calculating temperature-dependent, momentum-resolved spectral functions for silicon and the cubic perovskite SrTiO3, a strongly anharmonic material featuring soft modes. In the latter case, our approach reveals that anharmonicity and higher-order vibronic couplings contribute substantially to the electronic-structure at finite-temperatures, noticeably affecting band gaps and effective masses, and hence macroscopic properties such as transport coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا