ترغب بنشر مسار تعليمي؟ اضغط هنا

Distinction inside L-packets of SL(n)

88   0   0.0 ( 0 )
 نشر من قبل Nadir Matringe
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

If $E/F$ is a quadratic extension $p$-adic fields, we first prove that the $mathrm{SL}_n(F)$-distinguished representations inside a distinguished unitary L-packet of $mathrm{SL}_n(E)$ are precisely those admitting a degenerate Whittaker model with respect to a degenerate character of $N(E)/N(F)$. Then we establish a global analogue of this result. For this, let $E/F$ be a quadratic extension of number fields and let $pi$ be an $mathrm{SL}_n(mathbb{A}_F)$-distinguished square integrable automorphic representation of $mathrm{SL}_n(mathbb{A}_E)$. Let $(sigma,d)$ be the unique pair associated to $pi$, where $sigma$ is a cuspidal representation of $mathrm{GL}_r(mathbb{A}_E)$ with $n=dr$. Using an unfolding argument, we prove that an element of the L-packet of $pi$ is distinguished with respect to $mathrm{SL}_n(mathbb{A}_F)$ if and only if it has a degenerate Whittaker model for a degenerate character $psi$ of type $r^d:=(r,dots,r)$ of $N_n(mathbb{A}_E)$ which is trivial on $N_n(E+mathbb{A}_F)$, where $N_n$ is the group of unipotent upper triangular matrices of $mathrm{SL}_n$. As a first application, under the assumptions that $E/F$ splits at infinity and $r$ is odd, we establish a local-global principle for $mathrm{SL}_n(mathbb{A}_F)$-distinction inside the L-packet of $pi$. As a second application we construct examples of distinguished cuspidal automorphic representations $pi$ of $mathrm{SL}_n(mathbb{A}_E)$ such that the period integral vanishes on some canonical copy of $pi$, and of everywhere locally distinguished representations of $mathrm{SL}_n(mathbb{A}_E)$ such that their L-packets do not contain any distinguished representation.



قيم البحث

اقرأ أيضاً

Let $E/F$ be a quadratic extension of number fields and let $pi$ be an $mathrm{SL}_n(mathbb{A}_F)$-distinguished cuspidal automorphic representation of $mathrm{SL}_n(mathbb{A}_E)$. Using an unfolding argument, we prove that an element of the $mathrm{ L}$-packet of $pi$ is distinguished if and only if it is $psi$-generic for a non-degenerate character $psi$ of $N_n(mathbb{A}_E)$ trivial on $N_n(E+mathbb{A}_F)$, where $N_n$ is the group of unipotent upper triangular matrices of $mathrm{SL}_n$. We then use this result to analyze the non-vanishing of the period integral on different realizations of a distinguished cuspidal automorphic representation of $mathrm{SL}_n(mathbb{A}_E)$ with multiplicity $> 1$, and show that in general some canonical copies of a distinguished representation inside different $mathrm{L}$-packets can have vanishing period. We also construct examples of everywhere locally distinguished representations of $mathrm{SL}_n(mathbb{A}_E)$ the $mathrm{L}$-packets of which do not contain any distinguished representation.
We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.
105 - Nadir Matringe 2009
Let $K/F$ be a quadratic extension of $p$-adic fields, $sigma$ the nontrivial element of the Galois group of $K$ over $F$, and $pi$ a quasi-square-integrable representation of $GL(n,K)$. Denoting by $pi^{vee}$ the smooth contragredient of $pi$, and b y $pi^{sigma}$ the representation $picirc sigma$, we show that the representation of $GL(2n, K)$ obtained by normalized parabolic induction of the representation $pi^vee otimes pi^sigma$ is distinguished with respect to $GL(2n,F)$. This is a step towards the classification of distinguished generic representations of general linear groups over $p$-adic fields.
We consider the group $SL_2(K)$, where $K$ is a local non-archimedean field of characteristic two. We prove that the depth of any irreducible representation of $SL_2 (K)$ is larger than the depth of the corresponding Langlands parameter, with equalit y if and only if the L-parameter is essentially tame. We also work out a classification of all $L$-packets for $SL_2 (K)$ and for its non-split inner form, and we provide explicit formulae for the depths of their $L$-parameters.
With the aid of the exponentiation functor and Fourier transform we introduce a class of modules $T(g,V,S)$ of $mathfrak{sl} (n+1)$ of mixed tensor type. By varying the polynomial $g$, the $mathfrak{gl}(n)$-module $V$, and the set $S$, we obtain impo rtant classes of weight modules over the Cartan subalgebra $mathfrak h$ of $mathfrak{sl} (n+1)$, and modules that are free over $mathfrak h$. Furthermore, these modules are obtained through explicit presentation of the elements of $mathfrak{sl} (n+1)$ in terms of differential operators and lead to new tensor coherent families of $mathfrak{sl} (n+1)$. An isomorphism theorem and simplicity criterion for $T(g,V,S)$ is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا