ﻻ يوجد ملخص باللغة العربية
A new equilibrium pressure profile extending the Rigid-Rotor (RR) model with a simple unified expression $P=P(psi;beta_{s},alpha, sigma)$ for both inside and outside the separatrix is proposed, in which the radial normalized field-reversed configuration (FRC) equilibrium profiles for pressure, magnetic field, and current can be determined by only two dimensionless parameters $beta_sequiv P_s/2mu_0B_e^2$ and $delta_sequiv L_{ps}/R_s$, where $P_s$ is the thermal pressure at the separatrix, $B_e$ is the external magnetic field strength, $L_{ps}$ is the pressure profile scale length at the separatrix, and $R_s$ is the separatrix radius. This modified rigid rotor (MRR) model has sufficient flexibility to accommodate the narrow scrape of layer (SOL) width and hollow current density profiles, and can be used to fit experimental measurements satisfactorily. Detailed one-dimensional (1D) characteristics of the new MRR model are investigated analytically and numerically, and the results are also confirmed in two-dimensional (2D) numerical equilibrium solutions.
A new tool (GSEQ-FRC) for solving two-dimensional (2D) equilibrium of field-reversed configuration (FRC) based on fixed boundary and free boundary conditions with external coils included is developed. Benefiting from the two-parameter modified rigid
The Multi-region Relaxed MHD (MRxMHD) has been successful in the construction of equilibria in three-dimensional (3D) configurations. In MRxMHD, the plasma is sliced into sub-volumes separated by ideal interfaces, each undergoing relaxation, allowing
In the reversed field pinch RFX-mod strong electron temperature gradients develop when the Single-Helical-Axis regime is achieved. Gyrokinetic calculations show that in the region of the strong temperature gradients microtearing instabilities are the
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wake
Considering galaxies as self - gravitating systems of many collisionless particles allows to use methods of statistical mechanics inferring the distribution function of these stellar systems. Actually, the long range nature of the gravitational force