ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryogenesis in cosmological models with symmetric and asymmetric quantum bounces

43   0   0.0 ( 0 )
 نشر من قبل Paola Carolina Moreira Delgado
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The baryon-antibaryon asymmetry (excess of matter over antimatter in our Universe), indicated by observational data from the Cosmic Microwave Background anisotropies, predictions of primordial Nucleosynthesis, and the absence of intense radiation from matter-antimatter annihilation, constitutes an unsolved puzzle in cosmology. Two mechanisms for baryon asymmetry have been proposed as extensions of the Standard Model of Particle Physics at high energies. They rely on new couplings involving the baryon number current, one with a scalar field, called Spontaneous Baryogenesis, and the other with space-time curvature, named Gravitational Baryogenesis. These two mechanisms are investigated in the context of many bouncing scenarios, either symmetric or asymmetric around the bounce. It is shown that the constraints on the free parameters of these scenarios, imposed to yield the observed baryon-to-entropy ratio, are mild, already containing the values compatible with other observational constraints coming from the features of the power spectra of cosmological perturbations. Hence, realistic bouncing models can yield the observed baryon-antibaryon asymmetry if one of the two mechanisms proposed takes place in nature.

قيم البحث

اقرأ أيضاً

We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein-Skyrme system with winding number w = 1, in presence of a cosmological constant. The static spacetime metric is the direct product RxS3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback with unit topological charge. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX with time-dependent scale and squashing coefficients. Remarkably, the Skyrme equations are still identically satisfied for all values of these parameters. Thus, the complete set of field equations for the Einstein-Skyrme-Lambda system in the topological sector reduces to a pair of coupled, autonomous, nonlinear differential equations for the scale factor and a squashing coefficient. These equations admit analytic bouncing cosmological solutions in which the universe contracts to a minimum non-vanishing size, and then expands. A non-trivial byproduct of this solution is that a minor modification of the construction gives rise to a family of stationary, regular configurations in General Relativity with negative cosmological constant supported by an SU(2) nonlinear sigma model. These solutions represent traversable AdS wormholes with NUT parameter in which the only exotic matter required for their construction is a negative cosmological constant.
We consider four-dimensional wormholes immersed in bosonic matter. While their existence is based on the presence of a phantom field, many of their interesting physical properties are bestowed upon them by an ordinary complex scalar field, which carr ies only a mass term, but no self-interactions. For instance, the rotation of the scalar field induces a rotation of the throat as well. Moreover, the bosonic matter need not be symmetrically distributed in both asymptotically flat regions, leading to symmetric and asymmetric rotating wormhole spacetimes. The presence of the rotating matter also allows for wormholes with a double throat.
We determine the causal structure of the McVittie spacetime for a cosmological model with an asymmetric bounce. The analysis includes the computation of trapping horizons, regular, trapped, and anti-trapped regions, and the integration of the traject ories of radial null geodesics before, during, and after the bounce. We find a trapped region since the beginning of the contracting phase up to shortly before the bounce, thus showing the existence of a black hole. When the universe reaches a certain minimum scale in the contracting phase, the trapping horizons disappear and the central singularity becomes naked. These results suggest that neither a contracting nor an expanding universe can accommodate a black hole at all times.
One of the biggest puzzles in modern cosmology is the observed baryon asymmetry in the universe. In current models of baryogenesis gravity plays a secondary role, although the process is believed to have happened in the early universe, under the infl uence of an intense gravitational field. In the present work we resume Sakharovs original program for baryogenesis and propose a central role for gravity in the process. This is achieved through a non-minimal coupling (NMC) between the gravitational field and both the strong interaction field and the quark fields. When in action, the present mechanism leads to baryon number non-conservation and CP violation. Moreover, the NMC induces reduced effective quark masses, which favours a first order QCD phase transition. As a consequence, a baryon asymmetry can be attained in the transition from the quark epoch to the hadron epoch.
81 - Paul Tod 2007
We prove well-posedness of the initial value problem for the Einstein equations for spatially-homogeneous cosmologies with data at an isotropic cosmological singularity, for which the matter content is either a cosmological constant with collisionles s particles of a single mass (possibly zero) or a cosmological constant with a perfect fluid having the radiation equation of state. In both cases, with a positive cosmological constant, these solutions, except possibly for Bianchi-type-IX, will expand forever, and be geodesically-complete into the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا