ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum oscillator noise spectroscopy via displaced cat states

131   0   0.0 ( 0 )
 نشر من قبل Alistair Milne
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum harmonic oscillators are central to many modern quantum technologies. We introduce a method to determine the frequency noise spectrum of oscillator modes through coupling them to a qubit with continuously driven qubit-state-dependent displacements. We reconstruct the noise spectrum using a series of different drive phase and amplitude modulation patterns in conjunction with a data-fusion routine based on convex optimization. We apply the technique to the identification of intrinsic noise in the motional frequency of a single trapped ion with sensitivity to fluctuations at the sub-Hz level in a spectral range from quasi-DC up to 50 kHz.

قيم البحث

اقرأ أيضاً

We theoretically propose a method for on-demand generation of traveling Schrodinger cat states, namely, quantum superpositions of distinct coherent states of traveling fields. This method is based on deterministic generation of intracavity cat states using a Kerr-nonlinear parametric oscillator (KPO) via quantum adiabatic evolution. We show that the cat states generated inside a KPO can be released into an output mode by controlling the parametric pump amplitude dynamically. We further show that the quality of the traveling cat states can be improved by using a shortcut-to-adiabaticity technique.
241 - Renzhi Yuan , Julian Cheng 2020
The quantum discrimination of two non-coherent states draws much attention recently. In this letter, we first consider the quantum discrimination of two noiseless displaced number states. Then we derive the Fock representation of noisy displaced numb er states and address the problem of discriminating between two noisy displaced number states. We further prove that the optimal quantum discrimination of two noisy displaced number states can be achieved by the Kennedy receiver with threshold detection. Simulation results verify the theoretical derivations and show that the error probability of on-off keying modulation using a displaced number state is significantly less than that of on-off keying modulation using a coherent state with the same average energy.
Optical cat state plays an essential role in quantum computation and quantum metrology. Here, we experimentally quantify quantum coherence of an optical cat state by means of relative entropy and l_1 norm of coherence in Fock basis based on the prepa red optical cat state at rubidium D1 line. By transmitting the optical cat state through a lossy channel, we also demonstrate the robustness of quantum coherence of optical cat state in the presence of loss, which is different from the decoherence properties of fidelity and Wigner function negativity of the optical cat state. Our results confirm that quantum coherence of optical cat states is robust against loss and pave the way for the application with optical cat states.
68 - Z. Xiao , T. Fuse , S. Ashhab 2018
We study a qubit-oscillator system, with a time-dependent coupling coefficient, and present a scheme for generating entangled Schrodinger-cat states with large mean photon numbers and also a scheme that protects the cat states against dephasing cause d by the nonlinearity in the system. We focus on the case where the qubit frequency is small compared to the oscillator frequency. We first present the exact quantum state evolution in the limit of infinitesimal qubit frequency. We then analyze the first-order effect of the nonzero qubit frequency. Our scheme works for a wide range of coupling strength values, including the recently achieved deep-strong-coupling regime.
The controlled generation and the protection of entanglement is key to quantum simulation and quantum computation. At the single-mode level, protocols based on photonic cat states hold strong promise as they present unprecedentedly long-lived coheren ce and may be combined with powerful error correction schemes. Here, we demonstrate that robust ensembles of many-body photonic cat states can be generated in a Bose-Hubbard model with pair hopping via a spontaneous U(1) symmetry breaking mechanism. We identify a parameter region where the ground state is a massively degenerate manifold consisting of local cat states which are factorized throughout the lattice and whose conserved individual parities can be used to make a register of qubits. This phenomenology occurs for arbitrary system sizes or geometries, as soon as long-range order is established, and it extends to driven-dissipative conditions. In the thermodynamic limit, it is related to a Mott insulator to pair-superfluid phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا