ﻻ يوجد ملخص باللغة العربية
Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but training an extremely deep encoder is time consuming. Moreover, why deep models help NMT is an open question. In this paper, we investigate the behavior of a well-tuned deep Transformer system. We find that stacking layers is helpful in improving the representation ability of NMT models and adjacent layers perform similarly. This inspires us to develop a shallow-to-deep training method that learns deep models by stacking shallow models. In this way, we successfully train a Transformer system with a 54-layer encoder. Experimental results on WMT16 English-German and WMT14 English-French translation tasks show that it is $1.4$ $times$ faster than training from scratch, and achieves a BLEU score of $30.33$ and $43.29$ on two tasks. The code is publicly available at https://github.com/libeineu/SDT-Training/.
We propose minimum risk training for end-to-end neural machine translation. Unlike conventional maximum likelihood estimation, minimum risk training is capable of optimizing model parameters directly with respect to arbitrary evaluation metrics, whic
This paper proposes a new pre-training method, called Code-Switching Pre-training (CSP for short) for Neural Machine Translation (NMT). Unlike traditional pre-training method which randomly masks some fragments of the input sentence, the proposed CSP
We explore the application of very deep Transformer models for Neural Machine Translation (NMT). Using a simple yet effective initialization technique that stabilizes training, we show that it is feasible to build standard Transformer-based models wi
We present a simple and effective pretraining strategy -- bidirectional training (BiT) for neural machine translation. Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally. To achieve bidire
Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual p